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Abstract

We consider a pure-exchange general equilibrium economy populated by investors with
heterogeneous preferences and beliefs. The investors receive labor incomes, which are not
fully pledgeable, and can potentially default on their risky positions unless their asset
holdings are collateralized. We study the equilibrium implications of a constraint that
requires investors to keep their financial capital above a certain minimum level to provide
sufficient collateral. We characterize periods in the economy in which mere possibility of
a crisis makes constraints binding and significantly depresses interest rates and increases
Sharpe ratios. We find that stock price-dividend ratios are higher in the constrained
economy and the tightening of constraints emerges as a viable instrument for curbing
asset volatilities in bad times. Our equilibrium is stationary, and both investors survive
despite differences in beliefs. The equilibrium processes are derived in closed form.
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1. Introduction

Financial markets play a key role in facilitating risk sharing and efficient allocation of
assets among investors. However, trading in financial assets often entails moral hazard
due to investors’ incentives to default on their risky positions. The moral hazard can
be alleviated by collateralized trades whereby risky positions are guaranteed by financial
capital that can be seized in the event of default. The latter arrangement restores the
functionality of the financial system at a cost of reducing risk sharing among investors.
Furthermore, requiring risky positions to be backed by financial capital affects asset prices
by restricting the demand for risky positions. In this paper, we develop a parsimonious
model which sheds light on the economic effects of such restrictions on asset prices, their
moments, and the distribution of consumption and wealth in the economy. Our analysis
is facilitated by closed-form solutions of the model and the stationarity of equilibrium.

We consider a Lucas (1978) economy with one consumption good populated by two
representative investors with heterogeneous constant relative risk aversion (CRRA) prefer-
ences over consumption and heterogeneous beliefs about the growth rate of the aggregate
consumption. The investors receive non-tradable labor incomes each period and invest
their wealth in financial assets such as bonds and shares in the Lucas tree. Investor het-
erogeneity generates bilateral trades in assets and introduces time-variation in asset prices,
their moments, and the amount of leverage. The bilateral trades are curbed by the fact
that the investors can potentially default following financial losses, in which case, their
financial assets can be seized by counterparties but their labor incomes cannot be fully
expropriated. The default does not preclude the investors from re-entering the financial
markets in the future. The arising moral hazard problem in the economy is resolved by re-
quiring asset trades to be backed by collateral in such a way that the next-period’s value of
financial capital stays above a certain threshold at all times. We label the latter constraint
as capital requirement. A special case of zero threshold means that the value of financial
capital has to be positive at all times, so that all asset trades are cross-collateralized in
such a way that losses on one asset are offset by the gains on the other assets. The lat-
ter requirement arises when the labor income is non-pledgeable, and hence, the investors
cannot take risky positions backed by future labor income. A positive minimum capital
requirement is analogous to constraints imposed on banks by regulators, whereas negative
minimum capital requirement arises when part of the labor income can be pledged.

The aggregate consumption growth rates are independent and identically distributed
(i.i.d.) but may occasionally experience large negative transitory shocks during low-
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probability production crises in the economy. These shocks allow us to explore how the
mere anxiety about the possibility of a production crisis affects the economy by making
capital requirement constraints binding. We solve the model in closed form for general
risk aversions and beliefs and explore the effects of capital requirements on interest rates,
Sharpe ratios, price-dividend ratios, stock return volatilities, and distributions of investors’
consumption shares in the aggregate output. We summarize our main results below.

First, we study how the capital requirements affect interest rates and Sharpe ratios in
the economy. Our analysis reveals that rare production crises and capital requirements
amplify the effects of each other so that the interest rate is lower and the Sharpe ratio
is higher than in an economy where either crises or capital requirements are absent. In
particular, we show that during periods characterized by low wealth of the irrationally
optimistic investor, mere possibility of a large drop in the aggregate consumption next
period decreases the interest rates and increases Sharpe ratios relative to the unconstrained
benchmark. These effects occur because investors “fly to quality” by buying riskless bonds
when they expect constraints to bind next period. As a result, the interest rates drop and
Sharpe ratios increase to compensate investors for holding stocks in bad times.

Next, we turn to asset prices and show that the capital requirement constraint in-
creases stock price-dividend ratio relative to the unconstrained benchmark. The effects of
constraints are stronger when investors are close to their default boundaries, which makes
price-dividend ratios U-shaped functions of one of the investor’s share of the aggregate
consumption. Moreover, the price-dividend ratios become very sensitive and spike up-
wards in response to small economic shocks. In our economy, the consumption share of
the pessimist is high in bad times, when aggregate consumption is low due to a series of bad
shocks, and high in good times, when aggregate consumption is relatively high. Therefore,
the U-shaped pattern implies that the price-dividend ratio is procyclical in good times, as
in the data (e.g., Campbell and Shiller, 1988), but countercyclical in bad times.

Our explanation for the effect of capital requirements on asset prices is as follows.
Absent any frictions, the investors’ consumption shares, in general, vary from zero to one,
so that the economic impact of an investor either vanishes completely or dominates the
whole economy in the long-run (e.g., Blume and Easley, 2006; Yan, 2008; Chabakauri,
2015, among others). The capital requirements impose limits on investors’ financial losses.
Therefore, their consumption shares stay within certain bounds which lie strictly between
zero and one and are reached when investors hit their constraints. When an investor’s
constraint binds the other investor faces a loose constraint and has a consumption share

2



that reaches its maximum and cannot increase any further, in contrast to the unconstrained
economy. Therefore, the marginal utility of the latter investor is higher in the constrained
than in the unconstrained economy. Consequently, the stock price is higher under capital
requirements because the marginal utility of the investor with non-binding constraint is
proportional to the state price density and can be used for pricing assets. The effect is
stronger around times when investors’ constraints bind. There are also two additional
factors contributing to higher stock prices. First, capital requirements restrict the short-
selling by pessimists, which inflates stock prices (e.g., Harrison and Kreps, 1978). Second,
stock prices reflect the additional value due to the fact that stocks can be used as collateral
in lieu of non-pledgeable labor income.

The dynamics of price-dividend ratio determines the effect of constraints on volatili-
ties. We show that capital requirements dampen volatilities in bad times, when aggregate
consumption is low, and amplify them in good times, when aggregate consumption is high.
Therefore, capital requirements emerge as a useful tool for curbing excessive volatility in
bad times. Intuitively, because the price-dividend ratio is procyclical in good and counter-
cyclical in bad times, the price-dividend ratio and the dividend move in the same direction
in good times and in opposite directions in bad times. Because the stock price is the prod-
uct of the price-dividend ratio and the dividend, stock return volatility increases in good
times and decreases in bad times. We find that the volatility exhibits clustering and is
very sensitive to economic shocks when investors are close to hitting their constraints. In
particular, the economy abruptly switches into periods of low, medium of high volatility.

Finally, we show that the investor heterogeneity leads to dynamic reallocations of
wealth and consumption across the investors, which makes all equilibrium processes time-
varying. We find that the distributions of investors’ consumption shares are stationary
because the capital requirements ensure that consumption shares never drop below certain
levels, which serve as reflecting boundaries. We show that these distributions are well-
defined and non-trivial, and characterize them in analytic form in terms of elementary
functions. The stationarity of consumption shares provides an answer to a long-standing
question posed by Friedman (1953) and further explored by Blume and Easly (2006) and
others on whether irrational investors in financial markets can survive in the long-run. We
show that in the presence of capital requirements all investors survive irrespective of their
beliefs. Moreover, the distributions of investors’ consumption shares can be bimodal, so
that irrational investors can occasionally attain large consumption shares.

To our best knowledge, this paper is the fist to provide a tractable closed-form equilib-
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rium processes and distributions of consumption shares in an economy with imperfect risk
sharing among heterogeneous investors. The paper makes several methodological contri-
butions. First, it develops a tractable way of inducing the stationary of equilibrium, and
derives the stationary distributions in closed form for general risk aversions and beliefs.
Second, it shows that in the economies with reflecting boundaries the equilibrium is char-
acterized in terms of linear differential-difference equations of a peculiar type, where one
of the terms has a delayed argument, which is additionally restricted to exceed the lower
reflecting boundary. Third, the paper develops an efficient method for solving the latter
differential-difference equations in closed form. Finally, the paper introduces a tractable
discrete-time framework that facilitates the exposition in non-technical terms and permits
passing to continuous-time limits. Due to its tractability and stationarity our model is a
convenient benchmark for asset pricing research that can be extended in various directions.

Our paper contributes to a large literature in macroeconomics and finance that studies
economies with constraints designed to avoid defaults. Closest to us are papers that
study economies where investors have limited liability and face solvency constraints that
require their trades to be collateralized. Deaton (1990) considers a partial equilibrium
model in which investors trade in a riskless asset with an exogenous interest rate and
solve their consumption choice problem subject to a non-negativity constraint on their
financial wealth. Chien and Lustig (2010) study a similar constraint in an economy with a
continuum of investors that receive non-pledgeable labor incomes affected by idiosyncratic
shocks. Detemple and Serrat (2003) also study non-negative wealth constraint in a model
where investors have heterogeneous beliefs but identical risk aversions. They mainly focus
on interest rates and Sharpe ratios. The constraint studied in these works is a special
case of ours. Moreover, we focus on heterogeneity in preferences and beliefs, derive new
economic implications for asset prices and their moments, and find the equilibrium in closed
form. Geanakoplos (2003, 2009) and Fostel and Geanakoplos (2014) develop a theory of
collateral constraints with endogenous margins. Fostel and Geanakoplos (2008) apply this
theory to study how leverage cycles cause contagions and flight to collateral.

Kehoe and Levine (1993) solve investors’ optimization subject to a participation con-
straint under which investors are weakly better off not defaulting, and investors are per-
manently excluded form securities markets is they default. Kocherlakota (1996) derives a
sub-game perfect equilibrium in the economy without commitment. Alvarez and Jermann
(2000) demonstrate that participation constraints can be implemented by imposing certain
“not too tight” solvency portfolio constraints. Alvarez and Jermann (2001) study quan-
titative implications of these constraints and demonstrate that they help explain equity
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premia and Sharpe ratios in the U.S. economy. In contrast to this literature, our investors
have limited liability and are allowed to re-enter the market after default.

The paper is also related to the literature that studies economic effects of borrowing,
margin, short-sale and position limit constraints (e.g., Detemple and Murthy, 1997; Basak
and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Gromb and Vayanos, 2002, 2010;
Pavlova and Rigobon, 2008; Brunnermeier and Pedersen, 2009; Gârleanu and Pedersen,
2011; Buss et al, 2013; Chabakauri, 2013, 2015; Rytchkov, 2014, among others), portfolio
insurance (e.g., Basak, 2005) and VaR constraints (e.g., Basak and Shapiro, 2001). The
paper also relates to macro-finance and financial intermediation literatures that study
economies with frictions (Kiyotaki and Moore, 1997; Brunnermeier and Sannikov, 2014; He
and Krishnamurthy, 2012, 2013; Kondor and Vayanos, 2015). In particular, our constraint
on financial wealth is similar to non-negative consumption constraints imposed on risk-
neutral investors in Brunnermeier and Sannikov (2014) and Kondor and Vayanos (2015).

The unconstrained benchmark economy with heterogeneous preferences and beliefs is a
special case of our economy. Therefore, the paper also contributes to large literature that
studies frictionless economies with heterogeneous investors (e.g., Basak, 2005; Chan and
Kogan, 2002; Yan, 2008; Longstaff and Wang, 2012; Bhamra and Uppal, 2014; Gârleanu
and Panageas, 2014; Borovička, 2015, among others).

The paper is organized as follows. Section 2 discusses the economic setup and defines
the equilibrium. Section 3 provides a characterization of equilibrium both in discrete-time
and continuous-time economies. Section 4 provides the analysis of equilibrium and Section
5 concludes. Appendix provides the proofs.

2. Economic setup

We consider a pure-exchange infinite-horizon economy with one consumption good pro-
duced by an exogenous Lucas (1978) tree, and two representative heterogeneous investors
A and B that hold shares in the tree and receive labor income each period. To fa-
cilitate the exposition, we start our analysis with a discrete-time economy with dates
t = 0,∆t, 2∆t, . . ., and later take a continuous-time limit.
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Figure 1
States of the Economy
After time t the economy moves to a normal state with probability 1− λ∆t and to a crisis state
with probability λ∆t. Conditional on being in a normal state the economy moves to either ω1 or
ω2 with equal probabilities.

2.1. Aggregate output and securities markets

At each point of time t = 0,∆t, 2∆t, . . . the economy is in one of the three states: ω1, ω2,
and ω3. With probability 1− λ∆t the economy is either in state ω1 or state ω2, which we
call normal states, and with probability λ∆t it is in state ω3, which we call the crisis state.
Parameter λ is the crisis intensity. States ω1 and ω2 have probabilities 1/2 conditional on
the economy being in a normal state. Figure 1 depicts the structure of uncertainty.

At date t the tree produces Dt∆t units of aggregate output, where Dt follows a process

∆Dt = Dt[µD∆t+ σD∆wt + JD∆jt], (1)

where µD, σD, and JD are constant expected output growth, output growth volatility, and
a percentage drop in the aggregate output in the crisis state, respectively, and ∆Dt =
Dt+∆t − Dt is the change in the aggregate output. Furthermore, wt and jt are discrete-
time analogues of Brownian motion and Poisson processes, respectively.1 Processes wt and
jt follow dynamics wt+∆t = wt + ∆wt and jt+∆t = jt + ∆jt, where increments ∆wt and ∆jt
are independent and identically distributed random variables given by:

∆wt =


+
√

∆t, in state ω1,

−
√

∆t, in state ω2,

0, in state ω3,

∆jt =


0, in state ω1,

0, in state ω2,

1, in state ω3.

(2)

It can be easily verified that Et[∆wt|normal] = 0 and vart[∆wt|normal] = ∆t, similar to
a Brownian motion, where Et[·] and vart[·] are expectation and variance conditional on

1Chabakauri (2014) considers a similar process for the aggregate consumption Dt and demonstrates
its convergence to a continuous-time Lévy process as ∆t→ 0.
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time-t information, respectively. We assume that parameters µD, σD, and JD are such that
Dt > 0 at all times.

Fractions lA and lB of the aggregate output Dt∆t are paid to investors A and B as
their labor incomes, respectively, and fraction 1 − lA − lB is paid as a dividend to the
shareholders. Labor incomes are non-tradable. The investors can trade three securities at
date t: 1) a riskless bond in zero net supply which pays one unit of consumption at date
t+ ∆t; 2) one stock in net supply of one unit, which is a claim to the stream of dividends
(1−lA−lB)Dt∆t paid by the Lucas tree; 3) a zero net supply one-period insurance contract
that pays one unit of consumption in the crisis state ω3 and zero otherwise.2 Time-t bond,
stock, and insurance prices Bt, St, and Pt, respectively, are determined endogenously in
equilibrium. Absent any frictions the market is complete.

2.2. Investor heterogeneity and optimization problems

The investors have heterogeneous CRRA preferences over consumption, given by

ui(c) =


c1−γi

1− γi
, if γi 6= 1,

ln(c), if γi = 1,
(3)

where i = A,B. Moreover, the investors agree on observed time-t asset prices and the
aggregate output but disagree on the probabilities of states. Investor A is rational and has
correct probabilities

πA(ω1) = 1− λ∆t
2 , πA(ω2) = 1− λ∆t

2 , πA(ω3) = λ∆t, (4)

whereas investor B has biased probabilities

πB(ω1) = 1− λB∆t
2 (1 + δ

√
∆t), πB(ω2) = 1− λB∆t

2 (1− δ
√

∆t), πB(ω3) = λB∆t, (5)

where crisis intensity λB and disagreement parameter δ are such that probabilities πB(ω)
are positive. It is immediate to verify that πB(ω1)+πB(ω2)+πB(ω3) = 1, and hence, πB(ω)
defines a valid probability measure. Throughout the paper by Eit[·] and varit[·] we denote
conditional expectations and variances under the probability measure of investor i.

2In reality, the role of our insurance contract is performed by CDS contracts. The contract in our
setting is just an Arrow-Debreu security which is required to complete the underlying market (absent
portfolio constraints), and can be replaced by any other non-redundant security such as an option.
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The time-t expected output growth rate conditional on being in a normal state under
the beliefs of investor B is given by:

EB

t

[
∆Dt

Dt

∣∣∣normal
]

= (µD + δσD)∆t, (6)

Therefore, parameter δ measures the extent of the investor disagreement about the ex-
pected output growth during normal times. For tractability, we assume that investor B
does not update probabilities over time. We also assume that investor B is less risk averse
and more optimistic than investor A, so that γA ≥ γB, λ ≥ λB and δ ≥ 0.

At date 0 the investors have certain endowments of financial assets. The total time-t
wealth of investor i is given by Wit + liDt∆t, where Wit is the financial wealth, defined as
the time-t value of assets acquired at the previous date, and liDt∆t is labor income. At
each point of time t, investor i allocates total wealth to cit∆t units of consumption, bit
units of bond, and a portfolio of risky assets nit = (ni,St, ni,P t), which consists of ni,St units
of stock and ni,P t units of insurance.

In a frictionless economy the financial wealth can become negative when investors
purchase risky assets against their future labor income. However, we assume that labor
incomes are not fully pledgeable and the investors can potentially default when their
financial wealth becomes negative. The investors also have limited liability and can re-
enter the market after default, which gives rise to a moral hazard problem, similar to the
related literature (e.g., Chien and Lustig, 2010; Geanakoplos, 2009). As noted in Chien
and Lustig (2010), the limited liability is equivalent to holding a call option written on
financial wealth. The moral hazard problem is addressed here by requiring the investors
to hold collateralized positions in riskless bonds and risky assets so that their financial
capital stays above a certain minimum level at all times, as elaborated below.

The investors maximize their expected discounted utility with time-discount ρ

max
cit,bit,nit

Eit

[
∞∑
τ=t

e−ρτui(ciτ )∆t
]
, (7)

subject to the self-financing budget constraints, given by

Wit + liDt∆t = cit∆t+ bitBt + nit(St, Pt)>, (8)

Wi,t+∆t = bit + nit
(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
, (9)

and the capital requirement constraint

Wi,t+∆t ≥ ki
(
St+∆t + (1− lA − lB)Dt+∆t∆t

)
, (10)
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where i = A,B, 1{ωt+∆t=ω3} is the one-period insurance payment in state ω3, and ki is the
tightness of the constraint. By c∗it, b∗it, and n∗it we denote investors’ optimal consumptions
and asset holdings, and by W ∗

it their financial wealths under the optimal strategies.

The capital requirement constraint (10) has the following interpretations. When ki = 0,
the investors are required to fully collateralize their asset holdings in such a way that their
next-period financial wealth is positive, and hence, losses on one asset are offset by gains
on other assets. This constraint naturally arises when labor incomes are non-pledgeable.
For ki = 0 the constraint is the same as in Chien and Lustig (2010). However, while
Chien and Lustig (2010) study the economies where investors differ only with respect to
their idiosyncratic labor shocks, the investors in our economy differ in risk aversions and
beliefs. Therefore, our results are new even for the case ki = 0. In the economy with a
single risky asset the constraint is also the same as in Geanakoplos (2009), and requires the
investors to fully collateralize debt and short positions. The constraint is also similar to
non-negative consumption requirements imposed on risk-neutral investors in Brunnermeier
and Sannikov (2014) and Kondor and Vayanos (2015).

When ki < 0, the financial wealth can be negative to a certain extent. Such a constraint
arises when part of the labor income can be pledged. The unconstrained benchmark
economy is a special case of ours when ki = −∞. Finally, when ki > 0, the constraint can
be interpreted as a minimum capital requirement constraint frequently imposed on banks
by financial regulators. In the latter case, we require that kA + kB < 1 because otherwise
the aggregate wealth of investors would exceed the value of the whole market in violation
of the market clearing conditions.

We observe that capital requirement (10) is not a limit to arbitrage and allows investors
to eliminate arbitrage opportunities because adding to the investor’s portfolio an arbitrage
strategy that requires zero initial wealth and delivers nonnegative payoffs does not violate
the constraint. Furthermore, we note that minimum capital threshold ki(St+∆t + (1− lA−
lB)Dt+∆t∆t) on the right-hand side of constraint (10) can be interpreted as a fraction of the
value of the future labor income if it were tradable. Intuitively, because labor incomes and
the dividend are both proportional to Dt+∆t, and St+∆t is the price of the clam to future
dividends (1− lA− lB)Dτ∆t, we observe that li/(1− lA− lA)(St+∆t + (1− lA− lB)Dt+∆t∆t)
can be interpreted as the value of future labor incomes liDτ∆t. The structure of the
minimum capital is imposed for tractability.
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2.3. Equilibrium

Definition. An equilibrium is a set of asset prices {Bt, St, Pt} and of consumption and
portfolio policies {c∗it, b∗it, n∗it}i∈{A,B} that solve optimization problem (7) for each investor,
given processes {Bt, St, Pt}, and consumption and securities markets clear, that is,

c∗At + c∗Bt = Dt, b∗At + b∗Bt = 0, n∗A,St + n∗B,St = 1, n∗A,P t + n∗B,P t = 0. (11)

In addition to asset prices, we derive price-dividend and wealth-aggregate consumption
ratios Ψ = S/

(
(1 − lA − lB)D

)
and Φi = W ∗

i /D, respectively. We also derive annualized
∆t-period riskless interest rates rt, stock mean-returns µt and volatilities σt in normal
times, and the percentage change of the stock price in the crisis state, denoted by Jt.

Throughout the paper, we assume that the dividend processes are such that in the
homogeneous-agent economies populated by only investors A or investors B, respectively,
the investors’ value functions are finite, so that:[

∞∑
τ=0

e−ρτui(Dτ )∆t
]
< +∞. (12)

In Section 3 below, we provide easily verifiable conditions under which (12) is satisfied.

3. Characterization of equilibrium

In this section, we provide the characterization of equilibrium. We assume and later verify
that the matrix of asset payoffs in all states is invertible, and hence, a hypothetical small
unconstrained investor would face a complete-market economy. Moreover, the market is
arbitrage-free, as discussed above. Consequently, for each investor’s probability measure
πi(ω) there exists unique state price density (SPD) ξit in the economy (e.g., Duffie, 2001)
such that the asset prices satisfy the following equations:

Bt = Eit
[ξi,t+∆t

ξit

]
, (13)

St = Eit
[ξi,t+∆t

ξit

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)]
, (14)

Pt = Eit
[ξi,t+∆t

ξit
1{ωt+∆t=ω3}

]
, (15)

and the SPDs ξAt and ξBt are related by the following change of measure equation:
ξB,t+∆t

ξBt
= ξA,t+∆t

ξAt

πA(ωt+∆t)
πB(ωt+∆t)

. (16)
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We find the SPDs from the first order conditions for consumptions in terms of investors’
marginal utilities and Lagrange multipliers for capital constraints (10) by solving the in-
vestors’ optimizations (7) via dynamic programming. To facilitate the tractability, using
the existence of the SPD we first rewrite the budget equations (8)–(9) in a static form that
expresses the current wealth in terms of current consumption and the expected discounted
future wealth (e.g., Cox and Huang, 1989), and then solve the constrained optimization
problem by employing the method of Lagrange multipliers. Lemma 1 below reports the
equivalent optimization problem and the SPDs.

Lemma 1 (Dynamic programming and the first order condition).

1) Let Vi(Wit, vt) denote the value function of investor i, where vt is an unspecified state
variable. Then, the value function solves the following Hamilton-Jacobi-Bellman equation:

Vi(Wit, vt) = max
cit

{
ui(cit)∆t+ e−ρ∆tEit[Vi(Wi,t+∆t, vt+∆t)]

}
, (17)

where the maximization is subject to a static budget and capital requirement constraints

Wit+liDt∆t = cit∆t+Eit

[
ξi,t+∆t

ξit
Wi,t+∆t

]
, Wi,t+∆t ≥ ki(St+∆t+(1−lA−lB)Dt+∆t∆t). (18)

2) The SPDs ξit and optimal consumptions c∗it satisfy the following first order conditions:

ξi,t+∆t

ξit
= e−ρ∆t (c∗i,t+∆t)−γi + `i,t+∆t

(c∗it)−γi
, (19)

where `i,t+∆t ≥ 0 is the Lagrange multiplier for capital constraint (10) satisfying the com-
plementary slackness condition `i,t+∆t

(
W ∗
i,t+∆t − ki

(
St+∆t + (1− lA − lB)Dt+∆t∆t

))
= 0.

We note, that the capital requirements of investors A and B never bind simultane-
ously because otherwise the market clearing conditions would be violated. Therefore, at
each point of time, one of the investors’ constraints does not bind, and hence, the uncon-
strained investor’s marginal utilities can be used to derive the SPD using equation (19)
with `i,t+∆t = 0. We use the latter insight to derive ξi,t+∆t/ξit below.

We conjecture and later verify that the equilibrium can be derived in terms of state
variable vt given by the log-ratio of marginal utilities of investors evaluated at the investors’
shares in the aggregate consumption c∗it/Dt:

vt = ln
(

(c∗At/Dt)−γA
(c∗Bt/Dt)−γB

)
. (20)

Related literature on economies with heterogeneous investors typically derives equilibrium
in terms of a consumption share of one of the investors in the aggregate consumption (e.g.,
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Gârleanu and Pedersen, 2012; Chabakauri, 2013, 2015; Gârleanu and Panageas, 2014,
among others). Using the consumption clearing condition in (11), we rewrite equation
(20) in terms of consumption shares of investors A and B, defined as s = c∗At/Dt and
1− s = c∗Bt/Dt, and observe that variable vt is a decreasing function of share st, given by

vt = γB ln(1− st)− γA ln(st), (21)

and hence, there is a one-to-one mapping between these two variables.

Our first contribution is to derive closed-form dynamics for the state variable vt. We
start with the case where constraints do not bind, and hence, Lagrange multipliers `i are
zero. Next, using equation (20), we derive increment vt+∆t − vt in terms of consumptions
c∗it, and then express this increment in terms of SPDs using the first order condition (19)
with `i = 0. Finally, using equation (16) relating the SPDs under the probability measures
of investors A and B, we obtain:3

vt+∆t − vt = ln
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
, (22)

where πi(ωt+∆t) are investor i’s probabilities of next-period state ωt+∆t ∈ {ω1, ω2, ω3}.
Equation (22) gives the values of vt+∆t in next-period states ωt+∆t in closed form.

Next, we look at the case of binding constraints. By v and v we denote the values of
the state variable vt when constraints (10) of investors A and B bind, respectively, that is,
Wi,t+∆t = ki(St+∆t + (1− lA − lB)Dt+∆t∆t). Dividing both sides of the latter equation by
Dt+∆t, we rewrite it in terms of wealth-aggregate consumption and pice-dividend ratios:

ΦA(v) = kA(1− lA − lB)
(
Ψ(v) + ∆t

)
, ΦB(v) = kB(1− lA − lB)

(
Ψ(v) + ∆t

)
. (23)

We note that v < v because the constraint of investor A binds when A’s consumption share
st+∆t = cA,t+∆t/Dt+∆t is low and vice versa for investor B, and because low consumption
share corresponds to larger state variable vt, as discussed above.

Furthermore, we observe that v and v are reflecting boundaries for the state vari-
able process vt, and hence v ≤ vt ≤ v. Intuitively, the capital constraint (10) re-
stricts the investors’ losses in such a way that their wealths, and hence also the con-
sumption shares, never drop below a certain level. More formally, when investor A’s

3From equation (20) and the first order condition (19), we obtain:

vt+∆t − vt = ln
(

(c∗
A,t+∆t/c

∗
At)−γA

(c∗
B,t+∆t/c

∗
Bt)−γB

(
Dt+∆t

Dt

)γA−γB
)

= ln
(
ξA,t+∆t/ξAt

ξB,t+∆t/ξBt

(
Dt+∆t

Dt

)γA−γB
)
.

Using equation (16) for the SPDs, from the above equation we obtain equation (22).
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constraint is binding so that vt+∆t = v, using the fact that Lagrange multiplier `A,t+∆t

is positive and proceeding as in the derivation of equation (22), we find that v − vt ≤
ln
(
πB(ωt+∆t)/πA(ωt+∆t)

(
Dt+∆t/Dt

)γA−γB). Similarly, for vt+∆t = v we obtain that v−vt ≥
ln
(
πB(ωt+∆t)/πA(ωt+∆t)

(
Dt+∆t/Dt

)γA−γB). The latter two inequalities and equation (22)
for the dynamic of vt in the unconstrained case imply the following process for the state
variable:

vt+∆t = max
{
v; min

{
v; vt + ln

(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)}}
. (24)

Process (24) can be further rewritten in a more tractable way in terms of discrete processes
wt and jt, as reported in Proposition 1 below.

Proposition 1 (Closed-form state variable dynamics).
State variable vt follows dynamics:

vt+∆t = max
{
v; min{ v; vt + µv∆t+ σv∆wt + Jv∆jt}

}
, (25)

where drift µv, volatility σv, and the jump size Jv are constants given by

µv = 1
2∆t

(γA − γB) ln[(1 + µD∆t)2 − σ2
D∆t] + ln

(
1− λB∆t
1− λ∆t

)2

+ ln(1− δ2∆t)
 ,(26)

σv = 1
2
√

∆t

(
(γA − γB) ln

(
1 + µD∆t+ σD

√
∆t

1 + µD∆t− σD
√

∆t

)
+ ln

(
1 + δ

√
∆t

1− δ
√

∆t

))
, (27)

Jv = (γA − γB) ln(1 + µD∆t+ JD) + ln
(
λ
B

λ

)
− µv∆t. (28)

Proposition 1 provides closed-form dynamics of the state variable vt. The process for
vt evolves as a discrete-time analogue of an arithmetic Brownian motion with a jump when
constraints do not bind, and is reflected back into the unconstrained region when vt hits
the boundary. Therefore, the capital constraint (10) naturally gives rise to a stationary
distribution of the state variable, which we explore in the subsequent sections.

Our next step is to find the process for SPD and asset prices in the economy. When vt <
v, and hence investor A’s constraint is not binding, the first order condition (19) implies
that ξA,t+∆t/ξAt = e−ρ∆t(c∗A,t+∆t)−γA/(c∗A,t)−γA . When vt = v, investor A is constrained but
investor B is unconstrained, and hence, the state price density can be obtained analogously
in terms of investor B’s marginal utilities and then converted to correct beliefs of investor
A using the change of measure equation (16). After obtaining the SPD, we use equation

13



(14) for stock prices and equation (18) for investors’ wealths to derive price-dividend and
wealth-consumption ratios. Proposition 2 reports the results, and its proof in the Appendix
provides further details of the derivation.

Proposition 2 (Characterization of equilibrium in discrete time).

1) The state price density under the beliefs of investor A is given by:

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

Dt+∆t

Dt

)−γA
exp

(
max{0; vt +µv∆t+σv∆wt +Jv∆jt− v}

)
, (29)

where investor A’s time-t consumption share s(vt) solves equation (21).

2) The price-dividend ratio Ψ and wealth-aggregate consumption ratios Φi are functions of
the state variable v, and satisfy equations:

Ψ(vt) = EA

t

[
ξA,t+∆t

ξAt

Dt+∆t

Dt

(
Ψ(vt+∆t) + ∆t

)]
, (30)

Φi(vt) = EA

t

[
ξA,t+∆t

ξAt

Dt+∆t

Dt

Φi(vt+∆t)
]

+
(
1{i=A}s(vt) + 1{i=B}(1− s(vt))− li

)
∆t, (31)

The stock price is then given by St = (1− lA− lB)DtΨt, and bounds v and v solve equations
(23). Moreover, the matrix of asset payoffs is invertible if and only if σt 6= 0, where σt is
the stock return volatility in normal times.

3) Consider the constrained and unconstrained economies with the same value of state
variable vt. Then, the price-dividend ratio in the constrained economy is higher than in
the unconstrained economy.

3.1. Closed-form solution in a continuous-time limit

In this Section, we consider a continuous-time limit of the economy and provide closed-form
expressions for price-dividend and wealth-consumption ratios, interest rates and risk pre-
mia. Taking limit ∆t→ 0 allows rewriting equations (30) and (31) for the price-dividend
and wealth-consumption ratios as differential-difference equations. For tractability, we
derive ratios Ψt and Φt in terms of a transformed ratio Ψ̂(v; θ), which satisfies a simpler
equation reported in Lemma 2 below.

Lemma 2 (Differential-difference equation). In the limit ∆t→ 0, the price-dividend
ratio Ψ and wealth-aggregate consumption ratios Φi are given by:

Ψ(v) = Ψ̂(v;−γA)s(v)γA , (32)

Φi(v) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA , (33)
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where s(v) solves equation (21) and Ψ̂(v; θ) satisfies a differential-difference equation

σ̂2
v

2 Ψ̂′′(v; θ) +
(
µ̂v + (1− γA)σDσ̂v

)
Ψ̂′(v; θ)

−
(
λ+ ρ− (1− γA)µD + (1− γA)γA

2 σ2
D

)
Ψ̂(v; θ)

+ λ(1 + JD)1−γAΨ̂
(
max{v; v + Ĵv}; θ

)
+ s(v)θ = 0,

(34)

subject to the reflecting boundary conditions

Ψ̂′(v; θ) = 0, Ψ̂(v; θ)− Ψ̂′(v; θ) = 0, (35)

where constants µ̂v, σ̂v, and Ĵv are continuous-time limits of drift, volatility, and jump in
equations (26)–(28), and are given by:

µ̂v = (γA − γB)
(
µD −

σ2
D

2

)
+ λ− λB −

δ2

2 , (36)

σ̂v = (γA − γB)σD + δ, (37)

Ĵv = (γA − γB) ln(1 + JD) + ln
(
λB
λ

)
. (38)

We observe that equation (34) is linear, in contrast to economies with constraints
directly imposed on trading strategies of investors (e.g., Gârleanu and Pedersen, 2012;
Chabakauri, 2013, 2015; Rytchkov, 2014). Because investor B is less risk averse and more
optimistic, and also the aggregate output jump size JD is negative, the jump size of the
state variable Ĵv, given by (38), is negative. Therefore, equation (34) is a differential-
difference equation with a “delayed” argument in the fourth term on the left-hand side of
the equation. This term is further complicated by the fact that the delayed argument is
restricted to stay above the lower reflecting boundary v, which gives rise to the dependence
of the fourth term on a peculiar argument max{v; v+ Ĵv}. Intuitively, the latter argument
captures the impact of investors’ decisions in anticipation of hitting their wealth constraint.
Due to its linearity, the boundary value problem (34)–(35) can be easily solved numerically.
However, despite an unusual delay argument, problem (34)–(35) has a unique closed-form
solution, which we report in Proposition 3 below.

Proposition 3 (Closed-form solutions and the existence of equilibrium).

1) In the limit ∆t → 0 the price-dividend ratio Ψ and wealth-consumption ratios Φi are
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given by equations (32) and (33), where function Ψ̂(v; θ) with parameter θ is given by:

Ψ̂(v; θ) =
∫ v

v
s(y)θψ̂(v − y)dy +

∫ v

v
s(y)θ

[
ψ̂′(v − y)− ψ̂(v − y)

]
dy

1 +H

(
ψ̂(v − v)−

∫ v−v

0
ψ̂(y)dy

) (
1−H

∫ v−v

0
ψ̂(y)dy

)
,

(39)
where s(y) solves equation (21), and ψ̂(x), H and some auxiliary variables are given by:

ψ̂(x) = 2
σ̂2
v

∞∑
n=0

(2λ(1 + JD)1−γA

σ̂2
v

)n exp
(
(ζ+ + ζ−)(x+ nĴv)/2

)
(ζ+ − ζ−)2n+1n! (40)

× Qn

(
(ζ+ − ζ−)(x+ nĴv)

2

)
1{x+nĴv≥0}

]
, (41)

Qn(x) = exp(−x)
n∑

m=0
(2x)n−m (n+m)!

m!(n−m)! − exp(x)
n∑

m=0
(−2x)n−m (n+m)!

m!(n−m)! , (42)

H = λ+ ρ− (1− γA)µD + (1− γA)γA
2 σ2

D − λ(1 + JD)1−γA , (43)

ζ± = −
µ̂v + (1− γA)σ̂vσD ∓

√
(µ̂v + (1− γA)σ̂vσD)2 + 2σ̂2

v

(
λ+ ρ− (1− γA)µD + (1−γA)γA

2 σ2
D

)
σ̂2
v

.

(44)
2) Stock return volatility in normal times and the jump size Jt are given by:

σt = σD +
(

Ψ̂′(vt;−γA)
Ψ̂(vt;−γA)

− γA(1− s(vt))
γA(1− s(vt)) + γBs(vt)

)
σ̂v, (45)

Jt =
(1 + JD)Ψ̂

(
max{v; vt + Ĵv};−γA

)
s
(
max{v; vt + Ĵv}

)γA
Ψ̂(vt;−γA)s(vt)γA

− 1. (46)

The number of shares n∗i,St and leverage Lit = −bitBit to market price St ratio are given
by:

n∗i,St = Φi(vt)σD + Φ′i(vt)σ̂v
Ψ(vt)σt

,
Lit
St

= ni,St −
Φi(vt)

Ψ(vt)(1− lA − lB) . (47)

3) Let Ψi denote the price-dividend ratio in the economy populated only by investor i =
A,B. If ratios Ψi, given by equations (A58)-(A59) in the Appendix, are positive and finite
and σt 6= 0, then there exists an equilibrium such that investors’ value functions are bounded
and there exist reflecting boundaries v and v that satisfy equations (23).

Although expression (39) depends on consumption share s(y) implicitly defined by
equation (21), we observe that the change of variable x = s(y) allows rewriting (39)
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without implicit functions and fully in closed form.4 However, because s(y) is intuitive
and easy to compute, we keep s(vt) in the expression for Ψ̂(v; θ). We note that, despite
infinite summation, expression (41) for function ψ̂(x) has only finite number of terms for a
fixed x because Ĵv < 0, and hence, indicators 1{x+nĴv≥0} become zero for sufficiently large
n. The main advantage of having a closed-form solution is that it proves the existence
and uniqueness of the solution satisfying equation (34) and boundary conditions (35).
Nevertheless, the computations using the explicit formula remain tedious and the finite-
difference method for solving boundary value problem (34)-(35) appears to be faster.5

We call the interval v ∈ [v, v − Ĵv] in the state-space a period of anxious economy,
similar to Fostel and Geanakoplos (2008).6 When the economy falls into this state, even a
small possibility of a crisis renders the capital requirement constraint binding and leads to
deleveraging in the economy. To explore the economic effects of the anxious economy and
to complete the characterization of equilibrium, we provide closed-form expressions for
the interest rates rt and risk premia in normal times µt− rt, which can be easily obtained
using previously derived equations for asset prices and the state price density. Proposition
4 below reports the results.

Proposition 4 (Interest rates and risk premia in the limit). For a sufficiently small
time-interval ∆t the interest rate rt and the risk premium µt− rt in normal times have the
following expansions:

rt =



λ + ρ+ γAµD −
γA(1 + γA)

2 σ2
D +

(
γAσDσ̂v − µ̂v

γB

)
(1− st)Γt

− σ̂2
v

(
1

2γ2
B

(1− st)2Γ2
t + 1

2γ2
Aγ

2
B

st(1− st)Γ3
t

)

− λ(1 + JD)−γA
s
(
max{v; vt + Ĵv}

)
st

−γA +O(∆t), for v < vt < v,

(1− st)Γt
(
1{v=v} − 1{v=v}

)
− γB

2γB
√

∆t
σ̂v +O(1), for v = v or v = v.

(48)

4Despite the fact that s(y) is not available in closed form from equation (21) we observe that its inverse
function is given by s−1(x) = γB ln(x) − γA ln(1 − x). Therefore, the change of variable x = s(y) can be
performed in closed form, similar to Chabakauri (2015).

5In the absence of crises (i.e., λ = λB = 0), in the economy where γB = γA and risk aversions are
integers, the price-dividend ratio Ψ(v) is available in closed form as a finite sum of elementary functions.
For general risk aversions, the price-dividend ratio can be obtained in terms of hypergeometric functions.

6However, in contrast to Fostel and Geanakoplos (2008), in our economy the disagreement about the
consumption growth dynamics does not increase during these periods.

17



µt − rt =
(
γAσD −

(1− st)Γtσ̂v
γB

+ (1− st)Γtσ̂v(1{v=v} + 1{v=v})− γBσ̂v1{v=v}

2γB

)
σt

− λ(1 + JD)−γAJt

s
(
max{v; vt + Ĵv}

)
st

−γA +O(
√

∆t), (49)

where the continuous-time drift µ̂v, volatility σ̂v, and Ĵv of the state variable v are given
by equations (36)–(38), volatility σt and jump size Jt are given by equations (45)–(46),
respectively, and Γt ≡ γAγB/

(
γA(1 − st) + γBst

)
is the risk aversion of a representative

investor in the economy.

Proposition 4 provides tractable expressions for the interest rates and risk premia. The
effects of capital requirements on interest rates and risk premia arise due to the investors’
concern that when the economy is close to the boundary v a potential crisis may render the
constraints binding next period. As a result, the investors close to default invest more in
bonds, which leads to lower interest rates and higher risk premia to provide compensation
for holding risky assets. In particular, the last term in the first equation in (48) for the
interest rate quantifies the impact of capital requirements on precautionary savings due to
a downward jump in the aggregate consumption, which we further discuss in Section 4.

Equations (48) and (49) also contain terms with indicator functions 1{v=v} and 1{v=v},
which are non-zero only at the boundaries v and v. For the interest rate rt these terms have
the order of magnitude proportional to 1/

√
∆t, and hence, the interest rate has singularities

at the boundaries v and v when ∆t → 0. Similar singularities at the boundaries arise in
a continuous-time model of Detemple and Serrat (2003). Our discrete-time analysis sheds
further light on these singularities by uncovering their order of magnitude when time is
discrete. In particular, our analysis reveals for the first time that although the annualized
interest rate rt becomes −∞ when ∆t → 0, the per-period rate rt∆t exists, is finite, and
has an order of magnitude O(

√
∆t). Therefore, the singularity does not pose any difficulty

in a discrete-time economy or its continuous-time limit.

The intuition for the singularity is that in the interior region v < vt < v only a
downward jump poses the risk of making time-(t+ ∆t) wealth negative (assuming that ∆t
is sufficiently small) whereas at the boundary vt = v even a small negative shock ∆wt =
−
√

∆t may lead to a default. Consequently, when the capital requirement of an investor
binds at time t, the investor spends time-t labor income mainly on consumption and risk-
free bonds. Therefore, the interest rate sharply decreases and Sharpe ratio increases to
provide fair compensation for holding risky assets.
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3.2. Stationary distribution of consumption share

Due to the presence of the reflecting boundaries, the process for the state variable v is
stationary and vt ∈ [v, v] at all times. Similarly, the consumption share s is bounded
and stationary. Intuitively, the stationarity arises because the capital requirements (10)
protect investors against losing completely their shares of aggregate consumption. Absent
any frictions, state variable v follows an arithmetic Brownian motion with a jump, and
hence, the equilibrium is non-stationary. Therefore, labor incomes alone do not guarantee
stationarity, as we further explain in Section 4. We compute the transition densities and
the stationary probability density function (PDF) of consumption share s in closed form
in the continuous-time limit for the case when there is no risk of a crisis in the economy,
that is, JD = 0 and λ = λB = 0. Proposition 5 below reports the result.

Proposition 5 (Stationary distribution of consumption share). Suppose, λ =
λB = 0. Then, the PDF f(s, τ ; st; τ) of consumption share s at time τ conditional on
observing share st at time t is given in closed form by expression (A103) in the Appendix.
Furthermore, the stationary PDF of consumption share s is given by:

f(s) = 2µ̂v
σ̂2
v

(
γA
s

+ γB
1− s

) (
(1− s)γB/sγA

)2µ̂v/σ̂2
v

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v −

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v

1{s≤s≤s}, (50)

where µ̂v = (γA − γB)(µD − σ2
D/2) − δ2/2, σ̂v = (γA − γB)σD + δ, 1{s≤s≤s} is an indicator

function and s and s are the bounds on the consumption share s, which solve equation (23)
for v and v, respectively.

One important economic implication of the stationarity of equilibrium is that in our
constrained economy the investors with irrational beliefs survive in the long-run. This
finding is in contrast to frictionless economies where irrational investors lose wealth gradu-
ally over time, as first conjectured by Friedman (1953) and theoretically verified in various
economic settings (e.g., Blume and Easley, 2001; Yan, 2008; Chabakauri, 2015, among
others).7 Stationary PDF (50) has a particularly simple form when the investors have
identical risk aversions, as reported in Corollary 1 below. Figure 2 plots the stationary
PDF (51) and transition densities f(s, t; s0, 0), given by equation (A103) in the Appendix
A, for the case of heterogeneous risk aversions γA = 2 and γB = 1.5 and beliefs, different
horizons t, starting point s0 = 0.2, and boundaries s = 0.1 and s = 0.9. The stationary

7Borovička (2015) demonstrates the stationary of equilibrium in economies with Epstein-Zin investors
disagreeing about the output growth rate under certain restrictions on the risk aversions and intertemporal
elasticities of substitution of investors. The stationarity in our model arises due to the capital requirement
constraints and does not depend on investors’ risk aversions.
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Figure 2
Convergence to stationary distribution
The Figure shows transition densities f(s, t; s0, 0) for the starting point s0 = 0.2 and the station-
ary distribution f(s) (i.e., density for t =∞) for the economy with γA = 2, γB = 1.5, µD = 0.018,
σD = 0.032, λ = λB = 0, ρ = 0.02, δ = 0.1125, s = 0.1, s = 0.9.

distribution on Figure 2 is a non-monotone function of s, and hence, both rational and
irrational investors can occasionally have large consumption shares in equilibrium.

Corollary 1 (Stationary distribution of s for identical risk aversions). Suppose,
investors have identical risk aversions γA = γB = γ. Then, the stationary distribution of
consumption share s is given by

f(s) = γ

s(1− s)

(
s/(1− s)

)γ(
s/(1− s)

)γ
−
(
s/(1− s)

)γ 1{s≤s≤s}. (51)

Corollary 1 reveals a surprising result that the PDF of consumption share s does not
directly depend on the disagreement parameter δ, the aggregate consumption mean growth
µD and volatility σD when investors have identical risk aversions. These parameters only
affect the stationary PDF (51) via the reflecting boundaries s and s.
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4. Analysis of Equilibrium

In this section, we provide the analysis of equilibrium. We assume the following parameters
of the aggregate consumption process µD = 1.8%, σD = 3.2%, JD = −20%, and the crisis
intensities of investors A and B are λ = 0.017 and λB = 0.01, respectively. Furthermore,
we assume that the disagreement parameter is δ = 0.1125, which corresponds to the mean
growth rate (6) under investor B’s probabilities equal to 1.2µD, that is, 20% higher than
the true rate µD. For convenience, we here consider and plot the equilibrium processes
as functions of consumption share st = c∗At/Dt because s lies in the interval [0, 1]. We
note that consumption share s is countercyclical in the sense that it tends to increase
(decrease) following negative (positive) shocks to aggregate output growth rate dDt/Dt.
The countercyclicality of s is due to the fact that the aggregate wealth and consumption
shift to pessimist A (optimist B) following negative (positive) shocks to output. Hence,
we will say that a process is procyclical (countercyclical) if that process is a decreasing
(increasing) function of s. We assume that constraint tightness parameters in (10) are
given by kA = kB = 0, so that asset positions are required to be fully collateralized, and
set lower and upper reflecting bounds of consumption shares to s = 0.1 and s = 0.9.8

Figure 3 depicts investor B’s leverage/market ratio Lt/St and stock holdings nBt in
the constrained (solid line) and unconstrained (dashed line) economies for three cases
with different risk aversions: γA = γB = 0.9 (panels (a.i)–(b.i)), γA = γB = 2 (panels
(a.ii)–(b.ii)), γA = 2, γB = 1.5 (panels (a.iii)–(b.iii)).9 Panels (a.i)–(a.iii) demonstrate the
cyclicality of leverage in our economy. The leverage is lowest when either investor A or
investor B bind on their constraints. Intuitively, when s = s, investor B’s financial wealth
is zero, and hence, B cannot borrow because otherwise there might be a possibility of
financial wealth becoming negative if the economy is hit by adverse shocks. When s = s,
investor A’s financial wealth is zero and the labor income lADt∆t is infinitesimally small
in the continuous-time limit. Therefore, investor A cannot supply credit, and hence the
liquidity “dries up” for a certain period until investor A accumulates sufficient savings.

Panels (b.i)–(b.iii) demonstrate that the cyclicality of leverage naturally induces the
cyclicality in trading strategies. In particular, higher leverage allows investor B to acquire

8Instead of finding bounds s and s by first solving equation (23) and then equation (21), we pick them
directly. The implied labor income shares li and the tightness parameters ki giving rise to these bounds
can be backed out from equations (23), where v and v solve equation (20) for s and s, respectively. We
justify this approach by noting that exact values of income shares li do not affect the qualitative results.

9Following Longstaff and Wang (2012), we define the leverage/market ratio as the ratio of total debt
to the stock market value in the economy.
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Figure 3
Leverage and stock holdings of optimistic and less risk averse investor B
The Figure depicts optimistic and less risk averse investor B’s leverage/market price ratio Lt/St
and number of shares nSt as functions of consumption share st = c∗

At/Dt. The solid and dashed
lines correspond to constrained and unconstrained economies, respectively. We set µD = 0.018,
σD = 0.032, JD = −0.2, λ = 0.017, λB = 0.01, ρ = 0.02, δ = 0.1125, kA = kB = 0, s = 0.1, s = 0.9
and 1) γA = γB = 0.9 (panels (a.i)-(b.i)), 2) γA = γB = 2 (panels (a.ii)-(b.ii)), 3) γA = 2, γB = 1.5
(panels (a.iii)-(b.iii)).

more shares. From panels (b.i)–(b.iii) we also observe that in the unconstrained economy
investor B shorts stocks when consumption share s is close to its upper bound s, despite
being more optimistic and less risk averse than investor A. The intuition is that in bad
times, following a sequence of negative shocks to output, investor B shorts stocks to finance
current consumption and backs short position by the pledgeable labor income. From the
perspective of investor B, the stream of labor income lBDt∆t is equivalent to dividend
payments from holding n̂B = lB/(1 − lA − lB) units of non-tradable shares in the Lucas
tree. Short-selling allows the investor to circumvent the inability to trade n̂B shares and
freely adjust the effective share in the tree given by n̂B+nB,St. The effective share n̂B+nB,St
and consumption share 1 − s of investor B may decline to zero following a sequence of
bad shocks, and the financial wealth WBt may become negative. The trading strategy of
investor A can be analyzed similarly. Moreover, investor A has an additional motive to
short stocks because of being more pessimistic than investor B.

Short selling in the unconstrained economy mitigates the non-tradability of labor in-
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come, and hence, the equilibrium has similar properties as in the economies without labor
income. In particular, the distribution of consumption share s is non-stationary as in the
latter economies (e.g., Chabakauri, 2015), and, in general, only one of the investors survives
in the long run. In contrast to the unconstrained economy, in the constrained economy
financial wealths of investors are required to stay positive. As a result, consumption share
s of investor A has low s > 0 and upper s < 1 bounds, which induce stationarity.

Figure 4 depicts interest rates rt, Sharpe ratios (µt − rt)/σt in normal times, price-
dividend ratios Ψ, excess stock return volatilities in normal times (σt − σD)/σD in the
constrained (solid line) and unconstrained (dashed line) economies for three cases with
different risk aversions: γA = γB = 0.9 (panels (a.i)–(d.i)), γA = γB = 2 (panels (a.ii)–
(d.ii)), γA = 2, γB = 1.5 (panels (a.iii)–(d.iii)). Our results indicate that the qualitative
effect of the capital requirement constraint on equilibrium is similar for different risk
aversions. Below, we discuss the results and provide the economic intuition.

Panels (a.i)–(a.iii) show the interest rates rt in the constrained and unconstrained
economies.10 We find that the interest rate declines sharply when the economy enters
into an anxious state close to the boundary s in which even a small possibility of a crisis
state next period makes the constraint of investor B binding. The economic intuition
is as follows. In the unconstrained economy a crisis around state s generates wealth
transfer to the pessimistic and more risk averse investor A and increases her consumption
share s beyond s. However, in the constrained economy consumption share s remains
bounded by s. Therefore, following a crisis, investor A’s marginal utility is higher in the
constrained than in the unconstrained economy. As a result, investor A is more willing
to smooth consumption in the constrained economy and the interest rate declines due to
the precautionary savings motive. In particular, the investor buys more bonds, which
drives interest rates down. Panels (b.i)–(b.iii) show that the Sharpe ratio increases to
compensate investor A who is purchasing the risky assets from investor B. Our results on
interest rates and Sharpe ratios demonstrate that the rare crises and capital requirement
constraints reinforce the effects of each other. In particular, the decreases in interest rates
and increases in Sharpe ratios during anxious times arise only when both the crises and
the constraints (10) are present at the same time.

From panels (c.i)–(c.iii) we observe that the capital requirements give rise to higher
price-dividend ratio Ψ than in the unconstrained economy, Ψconstr

t − Ψunc
t > 0, consistent

10We exclude the singularities in the dynamics of rt and focus on the dynamics in the unconstrained
region because the economy spends an infinitesimal amount of time at the boundaries.
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Figure 4
Equilibrium processes
The Figure depicts interest rates rt, Sharpe ratios (µt−rt)/σt, price-dividend ratios Ψt and excess
volatilities (σt − σD)/σD as functions of st = c∗

At/Dt. The solid and dashed lines correspond to
constrained and unconstrained cases, respectively. We set µD = 0.018, σD = 0.032, JD = −0.2,
λ = 0.017, λB = 0.01, ρ = 0.02, δ = 0.1125, kA = kB = 0, s = 0.1, s = 0.9 and 1) γA = γB = 0.9
(panels (a.i)-(d.i)), 2) γA = γB = 2 (panels (a.ii)-(d.ii)), 3) γA = 2, γB = 1.5 (panels (a.iii)-(d.iii)).
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with Proposition 2, and the increases in Ψ are larger around the reflecting boundaries
s and s. As a result, the price-dividend ratios become U-shaped and sensitive to small
shocks around times when constraints become binding. We provide the intuition below.

Consider the case when the economy evolves close to the boundary s, where investor
B’s constraint is likely to bind but investor A is unconstrained. Because investor A’s
constraint does not bind the state price density ξAt is proportional to investor A’s marginal
utility of consumption (c∗At)−γA . In the constrained economy the consumption share of
investor A is capped by s < 1 whereas in the unconstrained economy it can increase
beyond s. Therefore, the marginal utility of investor A is expected to be higher in the
constrained economy than in the unconstrained one, and hence stocks are more valuable
in the constrained economy around the boundary s. Close to the boundary s investor A’s
constraint is likely to bind whereas investor B is unconstrained. Similarly to the above,
the marginal utility of investor B is higher in the constrained economy, which generates a
spike in the price-dividend ratio around s.

There are two additional economic forces that contribute to higher stock prices in
the constrained economy. First, the constraint curbs short-selling by pessimist A, which
contributes to higher stock prices (e.g., Harrison and Kreps, 1978). Second, the stock can
be used as collateral against which optimistic investors can borrow in good times in lieu
of future labor income, which makes the stock more valuable.

The dynamics of price-dividend ratios determines the dynamics of volatilities. The
results on panels (d.i)–(d.iii) demonstrate that the constraint makes volatilities more pro-
cyclical relative to the unconstrained case. Moreover, the constraint reduces stock return
volatility in bad times (around s) and increases it in good times (around s). This is because
the price-dividend ratio becomes more procyclical in good times (i.e., around s) and more
countercyclical in bad times (i.e., around s). Therefore, the stock becomes excessively
volatile in good times because both the price-dividend ratio and the dividend move in
the same direction, amplifying each other. Similarly, the volatility decreases in bad times
because the price-dividend ratio and the dividend move in opposite directions and cancel
the effects of each other. The decreases in volatilities in bad times are in line with the
findings in the previous literature that constraining liquidity may lead to lower volatilities
(e.g., Chabakauri, 2013, 2015; Brunnermeier and Sannikov, 2014, among others).11

The boundary conditions (35) allow us to explore volatility σt near the reflecting bound-
11We also note that σt > 0 for all s, and hence, as shown in Proposition 3, the matrix of asset payoffs

is invertible under our calibration of model parameters. This verifies our assumption in the beginning of
Section 3 that σt 6= 0.
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aries using closed form expressions reported in Corollary 2 below.

Corollary 2 (Stock return volatility at the boundaries). Stock return volatility in
normal times σt satisfies the following boundary conditions:

σ(s) = σD + sγBσ̂v
γA(1− s) + γBs

> σD, (52)

σ(s) = σD −
(1− s)γAσ̂v

γA(1− s) + γBs
< σD, (53)

where s and s are consumption shares of investor A, which solve equation (21) for the
boundary values of the state variables v and v, respectively.

By continuity of the volatility, the inequalities (52) and (53) also hold in a small vicinity
of boundaries s and s, respectively. The inequalities in Corollary 2 confirm our intuition
and are consistent with panels (b.i)–(b.iii). In particular, the volatility is higher around s
(good times) and lower around s (bad times). The empirical evidence suggests that the
volatility tends to be higher in bad times (e.g., Schwert, 1989). However, the literature
argues that high volatility in recessions can be explained by higher uncertainty about the
economic growth and learning effects (e.g., Veronesi, 1999) which are absent in our model.

Our results can potentially explain volatility crashes, which arise endogenously in our
economy. In particular, although volatility σt is a continuous function of consumption
share s, it becomes very steep close to the reflecting boundaries in the constrained economy,
which in the data might be difficult to distinguish from a discontinuous jump. Furthermore,
we note that for the cases when γA > 1 and γB > 1 on panels (d.ii) and (d.iii), the plot of
volatility σt can be subdivided into three parts with distinct dynamics. More specifically,
the market is very volatile in a region around v, calm around v, and moderate in between.
In the data such dynamics would lead to time-varying volatility clustering, consistent with
the empirical evidence (e.g., Bollerslev, 1987).

5. Conclusion

In this paper, we develop a parsimonious and tractable theory of asset pricing under capital
requirement constraints. We show that requiring investors to collateralize their trades has
significant effects on asset prices and their moments. We find that constraints decrease
interest rates and increase Sharpe ratios when optimistic investors are close to default
boundaries. The constraints increase price-dividend ratios, amplify volatilities in good
states and dampen them in bad states, and hence, capital requirements emerge as viable
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instruments for stabilizing markets in bad times. The tractability of our model allows us
to obtain asset prices and the distributions of consumption shares in closed form.
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Borovička, J., 2015, “Survival and Long-run Dynamics with Heterogeneous Beliefs under
Recursive Preferences,” Working Paper, New York University.

Brunnermeier, M. K., and L. H. Pedersen, 2009, “Market Liquidity and Funding Liquid-
ity,” Review of Financial Studies 22, 2201-2238.

Brunnermeier, M. K., and Y. Sannikov, 2014, “A Macroeconomic Model with a Financial
Sector,” American Economic Review 104, 379-421.

28



Buss, A., Dumas, B., Uppal, R., Vilkov, G., 2013. Comparing different regulatory mea-
sures to control stock market volatility: a general equilibrium approach. Working
Paper, INSEAD.

Campbell, J. Y. and R. J. Shiller, 1988, “The dividend-price ratio and expectations of
future dividends and discount factors,” Review of Financial Studies 3, 195-227.

Chabakauri, G., 2013, “Dynamic Equilibrium with two Stocks, Heterogeneous Investors,
and Portfolio Constraints,” Review of Financial Studies 26, 3104-3141.

Chabakauri, G., 2014, “Dynamic Equilibrium with Rare Events and Heterogeneous Epstein-
Zin Investors,” Working Paper, London School of Economics.

Chabakauri, G., 2015, “Asset Pricing with Heterogeneous Preferences, Beliefs, and Port-
folio Constraints,” Journal of Monetary Economics 75, 21-34.

Chan, Y. L., and L. Kogan, 2002, “Catching Up with the Joneses: Heterogeneous Pref-
erences and the Dynamics of Asset Prices,” Journal of Political Economy 110, 1255-
1285.

Chien, Y., and H. Lustig, 2010, “The Market Price of Aggregate Risk and the Wealth
Distribution,” Review of Financial Studies 23, 1596–1650.

Cox, J., and C.-F. Huang, 1989, “Optimal Consumption and Portfolio Policies when
Asset Prices Follow a Diffusion Process,” Journal of Economic Theory 49, 33-83.

Deaton, A., 1991, “Saving and Liquidity Constraints,” Econometrica 59, 1221-1248.

Detemple, J. B., and S. Murthy, 1997, “Equilibrium Asset Prices and No-Arbitrage with
Portfolio Constraints,” Review of Financial Studies 10, 1133-1174.

Detemple, J., and A. Serrat, 2003, “Dynamic Equilibrium with Liquidity Constraints,”
Review of Financial Studies 16, 597-629.

Duffie, D., 2001, Dynamic Asset Pricing Theory, Princeton, NJ: Princeton University
Press.

Fostel, A., and J. Geanakoplos, 2008, “Leverage Cycles and Anxious Economy,” American
Economic Review 98, 1211-1244.

Fostel, A., and J. Geanakoplos, 2014, “Endogenous Collateral Constraints and Leverage
Cycles,” Annual Review of Economics 6, 771-799.

Friedman, M ., 1953, Essays in Positive Economics, University of Chicago Press, Chicago.

29
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Appendix A: Proofs

Proof of Lemma 1.

1) We start by demonstrating the equivalence of the dynamic (8)–(9) and static (18) budget
constraints. Multiplying equation (9) by ξi,t+∆t/ξit, taking expectation operator Eit[·] on
both sides, and using equations (13)–(15) for asset prices, we obtain:

Eit

[
ξi,t+∆t

ξit
Wi,t+∆t

]
= bitBt + nit(St, Pt)>. (A1)

From the budget constraint equation (8), we observe that the right-hand side of (A1) equals
Wit + liDt∆t, and hence, we obtain the static budget constraint in (18). Conversely, if
there exists Wi,t+∆t satisfying constraints in (18) there exist trading strategies bit and nit

that replicate Wi,t+∆t because the underlying market is effectively complete (i.e., the payoff
matrix is invertible). Then, rewriting the optimization problem (7) in a recursive form,
we obtain the dynamic programming equation (17) for the value function.

2) Consider the following Lagrangian:

L = ui(cit)∆t+ e−ρ∆tEit
[
Vi(Wi,t+∆t, vt+∆t)

]
+ ηit

(
Wit + liDt∆t− cit∆t− Eit

[ξi,t+∆t

ξit
Wi,t+∆t

])

+ Eit
[
e−ρ∆t`i,t+∆t

(
Wi,t+∆t − ki(St+∆t + (1− lA − lB)Dt+∆t∆t)

)]
, (A2)

where multiplier `i,t+∆t satisfies the complementary slackness condition `i,t+∆t
(
Wi,t+∆t −

ki(St+∆t + (1 − lA − lB)Dt+∆t∆t)
)

= 0. Differentiating the Lagrangian (A2) with respect
to cit and Wi,t+∆t, we obtain:

u′i(c∗it) = ηit, (A3)

e−ρ∆t
(
∂Vi(Wt+∆t, vt)

∂W
+ `i,t+∆t

)
= ηi,t

ξi,t+∆t

ξit
. (A4)

By the envelope theorem (e.g., Mas-Colell, Whinston and Green, 1995; Back, 2010):

∂Vi(Wi,t+∆t, vt+∆t)
∂W

= u′i(c∗i,t+∆t). (A5)

Substituting the partial derivative of the value function (A5) and the marginal utility (A3)
into equation (A4), and then dividing both sides of the equation by u′i(c∗it), we obtain the
expression for the SPD (19). �
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Proof of Proposition 1. We look for coefficients µv, σv and Jv such that when the
constraints do not bind the increment vt+∆t − vt is given by:

µv∆t + σv∆wt + Jv∆jt = ln
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)

= ln
(
πB(wt+∆t)
πA(wt+∆t)

)
+ (γA − γB) ln(1 + µD∆t+ σD∆wt + Jv∆jt).

(A6)

Next, we write identity (A6) in each of the states ωt+∆t ∈ {ω1, ω2, ω3} and obtain the
following system of three linear equations with three unknowns µv, σv and Jv:

µv∆t + σv
√

∆t = ln
(

(1− λB∆t)(1 + δ∆t)
1− λ∆t

)
+ (γA − γB) ln(1 + µD∆t+ σD

√
∆t),

µv∆t − σv
√

∆t = ln
(

(1− λB∆t)(1− δ∆t)
1− λ∆t

)
+ (γA − γB) ln(1 + µD∆t− σD

√
∆t),

µv∆t + Jv = ln
(
λB
λ

)
+ (γA − γB) ln(1 + µD∆t+ JD).

(A7)

Solving the above system, we obtain µv, σv and Jv reported in Proposition 1. �

Proof of Proposition 2. 1) First, we derive the SPD ξAt under the correct beliefs of
investor A. When investor A’s constraint does not bind, substituting c∗At = s(vt)Dt into
the first order condition (19) we find that

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
. (A8)

Equation (A8) is consistent with SPD (29) because when the constraint does not bind
vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt < v, and hence the exponential term in (29) vanishes.

When the constraint of investor A is binding, the constraint of investor B does not
bind. This is because both constraints cannot bind simultaneously lest to violate the
market clearing conditions. Therefore, the ratio ξB,t+∆t/ξBt is given by FOC (19) for
investor B with `B = 0. Using equation (16), we rewrite the latter SPD under the correct
beliefs of investor A and obtain:

ξA,t+∆t

ξAt
= e−ρ∆t

(
1− s(vt+∆t)

1− s(vt)

)−γB (Dt+∆t

Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

. (A9)

Next, from equation (21) for consumption share s we find that (1 − st)−γB = e−vts−γAt .
Substituting the latter equality into equation (A9), and also using equation (A6) for the
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increment vt+∆t − vt, we obtain:

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
evt−vt+∆t

πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB

= e−ρ∆t
(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
exp{vt − vt+∆t + µv∆t+ σv∆wt + Jv∆jt}.

(A10)

The fact that the constraint of investor A is binding means that vt+∆t = v and vt+µv∆t+
σv∆wt + Jv ≥ v (because otherwise vt+∆t < v, and hence, the constraint does not bind).
Therefore, the exponential term exp(vt − vt+∆t) in equation (A10) can be replaced with
exp(max{0, vt + µv∆t + σv∆wt + Jv∆jt − v}). When the constraint of investor A does
not bind the latter term vanishes and we obtain equation (A8). Therefore, both equations
(A8) and (A10) can be conveniently summarized by equation (29) for ξA,t+∆t/ξAt.

2) The equation (30) for the price-dividend ratio can be easily obtained by substituting
St = (1− lA− lB)Ψt into equation (14) for stock prices in terms of SPD and then dividing
both sides by Dt. The equation (31) for the wealth-aggregate consumption ratio can be
obtained by substituting Wit = DtΦit into the equation for the static budget constraint in
(18) and dividing both sides by Dt.

To derive the matrix of asset returns, we rewrite the stock price dynamics as follows:

∆St +Dt+∆t∆t
St

= µt∆t+ σt∆wt + Jt∆jt.

Therefore, the matrix of time-(t+ ∆t) bond, stock and insurance returns is given by:
1 + rt∆t 1 + µt∆t+ σt

√
∆t 0

1 + rt∆t 1 + µt∆t− σt
√

∆t 0

1 + rt∆t Jt 1/Pt

 .

It is easy to see that the determinant of the above matrix is given by 2σt∆t(1 + rt∆t)/Pt.
Therefore, the matrix is non-degenerate when σt 6= 0.

3) In the unconstrained economy, the state variable vunct follows dynamics:

vunct = µv∆t+ σv∆wt + Jv∆jt. (A11)

Define processes Ut+∆t = Ut + ∆Ut and Vt+∆t = Vt + ∆Vt, where increments are given by:

∆Ut = max{0; vt+µv∆t+σv∆wt+Jv∆jt−v}, ∆Vt = max{0; v−vt−µv∆t−σv∆wt−Jv∆jt}.
(A12)
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The process for the state variable in the constrained economy can be rewritten as

vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt + ∆Vt −∆Ut. (A13)

If the state variables have the same value at time 0, i.e. v0 = vunc0 , we obtain:

vt = vunct + Vt − Ut (A14)

Next, we prove that the SPD is higher in the constrained economy.

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

Dt+∆t

Dt

)−γA
exp(∆Ut), (A15)

ξuncA,t+∆t

ξuncAt

= e−ρ∆t
(
s(vunct+∆t)
s(vunct )

Dt+∆t

Dt

)−γA
. (A16)

Iterating the above equations, we obtain:

ξAt
ξA0

= e−ρt
(
s(vt)
s(v0)

Dt

D0

)−γA
exp(Ut),

ξuncAt

ξuncA0
= e−ρt

(
s(vunct )
s(v0)

Dt

D0

)−γA
.

By the definition of s(v) in equation (21), we have ev = (1− s(v))γB · s(v)−γA . Hence,

ξAt/ξA0

ξuncAt /ξ
unc
A0

=
(
s(vt)
s(vunct )

)−γA
exp(Ut)

=
(
s(vunct + Vt − Ut)

s(vunct )

)−γA
ev

unc
t e−(vunct −Ut)

≥ s(vunct − Ut)−γAe−(vunct −Ut) · s(vunct )γAevunct

= (1− s(vunct − Ut))−γB · (1− s(vunc))γB ≥ 1.

(A17)

Therefore, we conclude that ξAt/ξA0 > ξuncAt /ξ
unc
A0 . The latter inequality and the equation

for stock prices (14) imply that Ψ(v0) ≥ Ψunc(v0). The proof for the case when time-t
variables in the constrained and unconstrained economies coincide is analogous. �

Proof of Lemma 2. Define the following function in discrete time:

Ψ̂(vt; θ) = EA

t

[
e−ρ∆t+∆Ut

(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]
+ s(vt)θ∆t, (A18)

where ∆Ut is given by equation

∆Ut = max{0; vt + µv∆t+ σv∆wt + Jv∆jt − v}. (A19)
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Comparing equation (A18) with equations (30) and (31) for Ψ and Φi and using the
linearity of equation (A18), it easy to observe that Ψ(vt) and Φi(vt) are given by the
following equations in terms of Ψ̂(vt; θ):

Ψ(vt) = Ψ̂(vt,−γA)s(vt)−γA −∆t,

Φ(vt) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA .

Taking limit ∆t→ 0, we obtain equations (32) and (33) for Ψ(vt) and Φi(vt).

First, we derive the equation for Ψ̂(vt; θ) when vt belongs to the interior (v, v). For a
sufficiently small ∆t we have ∆Ut = 0, where ∆Ut is given by (A19). Then, we rewrite
the expectation of (Dt+∆t)/Dt)1−γAΨ̂(vt; θ) as follows:

EA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]
= (1− λ∆t)EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

∣∣∣normal
]

+λ∆tEA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

∣∣∣crisis
]
.

(A20)

Noting that in the crisis Dt+∆t/Dt = 1 + µv∆t+ JD and vt+∆t = max{v; vt + µv∆t+ Jv}
and in the normal state Dt+∆t/Dt = 1 + µD∆t+ σD∆wt and vt+∆t = vt + µv∆t+ σv∆wt,
using Taylor expansions for (Dt+∆t/Dt)1−γA and Ψ̂(vt+∆t; θ), we find:

EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)|crisis

]
= (1 + JD)1−γAΨ̂

(
max{v; vt + Jv}; θ

)
. (A21)

EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)|normal

]
=
[
1 +

(
(1− γA)µD + (1− γA)γAσ2

D

2

)
∆t
]

Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(vt; θ)∆t + σ2

v

2 Ψ̂′′(vt; θ)∆t+ o(∆t). (A22)

Substituting (A21)-(A22) into (A18), we obtain:

Ψ̂(vt; θ) =
[
1−

(
λ+ ρ− (1− γA)µD + (1− γA)γA

2 σ2
D

)
∆t
]

Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(v; θ)∆t+ σ2

v

2 Ψ̂′′(v; θ)∆t

+ λ(1 + JD)1−γAΨ̂
(
max{v; vt + Jv}; θ

)
∆t+ s(v)θ∆t+ o(∆t).

(A23)

Canceling similar terms, diving by ∆t, taking limit ∆t → 0, and noting that µv, σv and
Jv converge to µ̂v, σ̂v and Ĵv given by (36)-(38), we obtain equation (34) for Ψ̂(vt; θ).

Next, we derive the boundary conditions for Ψ̂(vt; θ). From equation (25), the state
variable dynamics at lower bound is vt+∆t = v + max{0, µv∆t+ σv∆wt + Jv∆jt}. We use
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∆vt to denote the difference of vt+∆t and vt. In this case,

∆vt = max{0, µv∆t+ σv∆wt + Jv∆jt}. (A24)

For sufficiently small ∆t increment ∆vt is positive only in state ω1 and is zero otherwise.
In state ω1, ∆vt = µv∆t + σv

√
∆t. Therefore, the order of EA

t [∆vt] is
√

∆t, but second
order terms involving ∆vt have lower order:

lim∆t→0
EA
t [∆vt]√

∆t
= σ̂v

2 ,

lim∆t→0
EA
t

[
(∆vt)2

]
√

∆t
= lim

∆t→0

EA
t [∆vt∆t]√

∆t
= lim∆t→0

EA
t [∆vt∆wt]√

∆t
= lim

∆t→0

EA
t [∆vt∆jt]√

∆t
= 0.

(A25)
Taylor expansion of Ψ̂(vt+∆t; θ) at vt = v is given by

Ψ̂(vt+∆t; θ) = Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt + 1
2Ψ̂′′(v; θ)∆v2

t + o(
√

∆t). (A26)

In subsequent calculations we keep terms with order of
√

∆t and higher. Using the above
results, we obtain the following expansion:

EA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]

= EA
t

[
(1 + µD∆t+ σD∆wt + Jv∆jt)1−γA

(
Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt + 1

2Ψ̂′′(v; θ)∆v2
t

)]
= Ψ̂(v; θ) + Ψ̂′(v; θ)EA

t [∆vt] + o(
√

∆t).
(A27)

Substituting (A27) into (A18), taking into account that ∆Ut = 0 at vt = v, and canceling
Ψ̂(v; θ) on both sides, we obtain the first boundary condition Ψ̂′(v; θ) = 0.

At the upper bound vt = v investor A is constrained, and hence, ∆Ut in (A19) is
positive. From (25) the state variable dynamics at the upper bound is

vt+∆t = min{v, vt + µv∆t+ σv∆wt + Jv∆jt} = vt + µv∆t+ σv∆wt + Jv∆jt−∆Ut. (A28)

The order of EA
t [∆Ut] is

√
∆t, but second order terms involving ∆Ut have lower order.

Proceeding in the same way as (A25)-(A27), we arrive at

Ψ̂(v; θ) = Ψ̂(v; θ) +
[
Ψ̂(v; θ)− Ψ̂′(v; θ)

]
EA

t [∆Ut] + o(
√

∆t).

Canceling similar terms taking the limit ∆t→ 0, we obtain the second boundary condition
Ψ̂(v; θ)− Ψ̂′(v; θ) = 0. �
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Proof of Proposition 3. 1) First, we solve the differential-difference equation in Lemma
2. To facilitate the derivations, we denote g(x) = Ψ̂(x + v; θ) and apply the following
changes of variables:

x = v − v, σ̃ = σ̂v, µ̃ = µ̂v + (1− γA)σDσ̂v, J̃ = −Ĵv, λ̃ = λ(1 + JD)1−γA ,

ρ̃ = λ+ ρ− (1− γA)µD + (1− γA)γA
2 σ2

D.
(A29)

Equations (34) and (35) with new variables now become:

σ̃2

2 g
′′(x) + µ̃g′(x)− ρ̃g(x) + λ̃g(max{x− J̃ , 0}) + s(x+ v)θ = 0, (A30)

g′(0) = 0, g(v − v)− g′(v − v) = 0. (A31)

Let L [g(x)] =
∫∞

0 e−zxg(x)dx be the Laplace transform of g(x), and similarly for other
functions. The Laplace transforms of g′(x), g′′(x) and g(max{x − J̃ , 0}) are related to
L [g(x)] as follows:

L [g′(x)] = zL [g(x)]− g(0),

L [g′′(x)] = z2L [g(x)]− zg(0)− g′(0),

L
[
g(max{x− J̃ , 0})

]
=
∫ ∞

0
e−zxg(max{x− J̃ , 0})dx

=
∫ J̃

0
e−zxg(0)dx+

∫ ∞
J̃

e−zxg(x− J̃)dx

= 1
z

(1− e−J̃z)g(0) + e−J̃zL [g(x)] .

(A32)

Applying the transform to equation (A30), we arrive at the following equation:

σ̃2

2
(
z2L [g(x)]− zg(0)− g′(0)

)
+ µ̃ (zL [g(x)]− g(0))− ρ̃L [g(x)]

+ λ̃
(
e−J̃zL [g(x)] + 1

z
(1− e−J̃z)g(0)

)
+ L

[
s(x+ v)θ

]
= 0.

(A33)
Applying boundary condition g′(0) = 0 and solving for L [g(x)], we obtain:

L [g(x)] =
L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

+ g(0)
(

1
z
− ρ̃− λ̃
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

· 1
z

)
. (A34)

Now define a new function ψ̂(x) through inverse Laplace transform

ψ̂(x) = L−1
[

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

]
. (A35)
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Next, we apply inverse transform to each term in (A34). Noting that L−1[1/z] = 1 and
using the theorem which states that Laplace transform of a convolution is the product of
Laplace transforms, we derive the following inverse transforms:

L−1

 L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

 =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy,

L−1
[

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

· 1
z

]
=
∫ x

0
1{y≥0} · ψ̂(x− y)dy =

∫ x

0
ψ̂(y)dy.

(A36)

The linearity of the Laplace transform gives the following equation:

g(x) = L−1 [L [g(x)]] =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy + g(0)

[
1−

(
ρ̃− λ̃

) ∫ x

0
ψ̂(y)dy

]
. (A37)

We calculate g(0) below, and then after changing the variable back from x to v = x + v,
substituting in expressions for ρ̃ and λ̃ from (A29), we obtain (39).

Next, we solve for ψ̂(x) in closed form. We expand L
[
ψ̂(x)

]
as series, and sum up the

inverse transforms of each term in the summation to get ψ̂(x).

L
[
ψ̂(x)

]
= 1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

= (ρ̃− µ̃z − σ̃2

2 z
2)−1 · (1− λ̃e−J̃z

ρ̃− µ̃z − σ̃2

2 z
2
)−1

=
∞∑
n=0

λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

.

(A38)

The above series converges for z such that |ρ̃− µ̃z− (σ̃2/2)z2| > |λ̃ exp(−J̃z)|. This holds
if the real part of z is sufficiently large, e.g., <(z) > 4|µ̃|/σ̃2 + (2/σ̃)

√
ρ̃+ λ̃. The inverse

Laplace transform can then be calculated along the line (z − i∞, z + i∞) in the complex
domain where z > 4|µ̃|/σ̃2 + (2/σ̃)

√
ρ̃+ λ̃, and hence, the inequality for <(z) is satisfied.

Let ζ− < ζ+ be roots of ρ̃ − µ̃z − σ̃2z2/2 = 0, given by (44). We use the following
inversion formula for 1/[(z − ζ+)(z − ζ−)]n+1 from page 1117 of Gradshteyn and Ryzhik
(2007):

L−1
[

1
[(z − ζ+)(z − ζ−)]n+1

]
=

√
π

Γ(n+ 1)
xn+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 xIn+ 1
2

(
ζ+ − ζ−

2 x

)
. (A39)
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Function e−nJ̃z in the complex domain corresponds to a shift from x to x−nJ̃ . Therefore,

L−1

 λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

 = λ̃n
(
− σ̃

2

2

)−n−1

1x≥nJ̃

×
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
.

(A40)

Consequently, the explicit expression for ψ̂(x) is given by:

ψ̂(x) =
∞∑
n=0

λ̃n
(
− σ̃

2

2

)−n−1 1{x≥nJ̃}
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
.

(A41)
where function In+ 1

2
(·) is a modified Bessel function of the first kind, ζ− < ζ+ are given by

(44) and ρ̃, µ̃, σ̃, λ̃, and J̃ are defined in (A29). Bessel function In+ 1
2
(·) is given by (see

equation 8.467 in Gradshteyn and Ryzhik (2007)):

In+ 1
2
(z) = 1√

2πz

[
ez

n∑
m=0

(−1)m(n+m)!
m!(n−m)!(2z)m + (−1)n+1e−z

n∑
m=0

(n+m)!
m!(n−m)!(2z)m

]
. (A42)

Substituting (A42) into (A41), after minor algebra, we obtain expression (41) for ψ̂(x).
We note, that for a fixed x the summation in (A41) is finite, and hence well-defined, due
to the presence of indicator functions.

To find g(0) in equation (A37), we first evaluate ψ̂(0). From the above formula (A41),
because 1{x≥nJ̃} is zero for any n greater than 0, we obtain

ψ̂(0) = − 2
σ̃2 ·

eζ+·0 − eζ−·0

ζ+ − ζ−
= 0. (A43)

Differentiating (A37) and using ψ̂(0) = 0, we find:

g′(x) =
∫ x

0
s(y + v)θ · ψ̂′(x− y)dy − g(0) ·

(
ρ̃− λ̃

)
ψ̂(x), (A44)

We solve for g(0) from the boundary condition g(v − v)− g′(v − v) = 0 and obtain:

g(0) =

∫ v−v

0
s(y + v)θ ·

[
ψ̂′(v − v − y)− ψ̂(v − v − y)

]
dy

1−
(
ρ̃− λ̃

) ∫ v−v

0
ψ̂(y)dy +

(
ρ̃− λ̃

)
ψ̂(v − v)

. (A45)

Substituting (A45) into (A37), we derive equation (39) for Ψ̂(v; θ).
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2) Next we solve for stock volatility and jump size. In the unconstrained region v < vt < v,
stock price St, dividend Dt and state variable vt follow processes:

dSt = St[µtdt + σtdwt + Jtdjt],

dDt = Dt[µDdt + σDdwt + JDdjt],

dvt = µ̂vdt+ σ̂vdwt +
(
max{v; vt + Ĵv} − vt

)
djt.

(A46)

Applying Ito’s lemma to St = Ψ̂(vt;−γA)s(vt)−γA , and matching dwt and djt terms, after
some algebra, we obtain σt and Jt in Proposition 3.

Equation equation (9) for Wi,t+∆t, implies the following expressions for n∗i,St and b∗it:

n∗i,St =

√√√√ vart[Wi,t+∆t −Wit|normal]
vart[∆St + (1− lA − lB)Dt∆t|normal] ,

b∗it = Et[Wi,t+∆t|normal]− nitEt[St+∆t + (1− lA − lB)Dt+∆t∆t|normal].

Taking ∆t→ 0 limit in the above expressions and using expansions similar to those in the
proof of Lemma 2, we obtain the number of stocks and the leverage per the market value
of stocks in equation (47).

3) Here, we prove the existence of v and v. Boundaries v and v are solutions to equations
(23), which we now seek to express in terms functions Ψ̂(v; θ). Substituting (32) and (33)
into (23), dividing both sides by s(v)γA and taking the limit ∆t→ 0, we obtain:

Ψ̂(v; 1− γA)− lAΨ̂(v;−γA) = kA(1− lA − lB)Ψ̂(v;−γA)
(1− lB)Ψ̂(v;−γA)− Ψ̂(v; 1− γA) = kB(1− lA − lB)Ψ̂(v;−γA).

(A47)

Let l̃A = lA + kA(1− lA− lB) and l̃B = lB + kB(1− lA− lB). Because kA + kB < 1, it is easy
to observe that 1− l̃B > l̃A, and hence, γB ln(l̃B)− γA ln(1− l̃B) < γB ln(1− l̃A)− γA ln(l̃A).

Equations (A47) are equivalent to the following two equations:

Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= l̃A,
Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= 1− l̃B. (A48)

Define
LB(v, v) = Ψ̂(v; 1− γA)

Ψ̂(v;−γA)
. (A49)

Substituting Ψ̂(v; θ) from (39) into equation (A49), after some algebra, we obtain:

LB(v, v) =

∫ v

v

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γA · s(y)dy∫ v

v

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γAdy

. (A50)
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LB(v, v) is a weighted average of a decreasing function s(y) from v to v. By (A63)
in Lemma A.1 the weighting function

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γA is positive. Con-

sequently LB(v, v) < s(v) and the function is decreasing in its first argument because

∂

∂v
LB(v, v) =

[
ψ̂(v − v)− ψ̂′(v − v)

]
s(v)−γA∫ v

v

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γAdy

[LB(v, v)− s(v)] < 0. (A51)

Consequently, for any v ≥ γB ln(1− l̃A)− γA ln(l̃A),

LB(γB ln(l̃B)− γA ln(1− l̃B), v) < s(γB ln(l̃B)− γA ln(1− l̃B)) = 1− l̃B. (A52)

Below, we prove that there exists a V < 0 such that LB(V , v) > 1 − l̃B for any v ≥
γB ln(1− l̃A)−γA ln(l̃A). Consequently, by the intermediate value theorem, equation (A49)
has a solution v for any fixed v.

Using inequalities (A64) and (A65) from Lemma A.1 and inequality (A79) from Lemma
A.2 below, we derive the following inequality:

1− LB(V , v) =

∫ v

V

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γA(1− s(y))dy∫ v

V

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γAdy

<

∫ v

V

[
−ez+(v−y)ψ̂′(0)

]
(2γB+1ey + 2γAe

1
γB

y)dy∫ v−1

V

[
−ez+(v−y−1)(z+ − 1)ψ̂(1)

]
s(v)−γAdy

= ψ̂′(0)ez+
s(v)γA

(z+ − 1)ψ̂(1)
·

∫ v

V
2γB+1e(1−z+)y + 2γAe( 1

γB
−z+)y

dy∫ v−1

V
e−z

+ydy

<
ψ̂′(0)ez+

s(γB ln(1− l̃A)− γA ln(l̃A))γA
(z+ − 1)ψ̂(1)

·

∫ ∞
V

2γB+1e(1−z+)y + 2γAe( 1
γB
−z+)y

dy∫ γB ln(1−l̃A)−γA ln(l̃A)−1

V
e−z

+ydy

.

(A53)
As y decreases, the denominator term e−z

+y increases exponentially faster than any term
on the numerator. Consequently, the right-hand side of the above inequality converges to
0 as V → −∞, which can be formally verified by L’Hôpital’s rule. Therefore, there exists
a V < 0 not dependent on v such that 1− LB(V , v) < l̃B, or, equivalently,

LB(V , v) > 1− l̃B. (A54)
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For a given v, LB(v, v) is an continuously decreasing function of v that takes different
signs at the endpoints of the interval

[
V , γB ln(l̃B)− γA ln(1− l̃B)

]
. Therefore, by the in-

termediate value theorem there exists unique v ∈
[
V , γB ln(l̃B)− γA ln(1− l̃B)

]
such that

LB(v, v) = 1 − l̃B, and this defines a mapping v = mB(v). Since LB has non-zero partial
derivative with respect to v, mB(·) is continuous by the implicit function theorem.

Similar to (A49), we define

LA(v, v) = Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

. (A55)

Substituting Φ̂(v, θ) from (39) into (A55), after some algebra, we obtain:

LA(v, v) =

∫ v

v

[
q′(v − v)ψ̂(v − y)− q(v − v)ψ̂′(v − y)

]
s(y)−γA · s(y)dy∫ v

v

[
q′(v − v)ψ̂(v − y)− q(v − v)ψ̂′(v − y)

]
s(y)−γAdy

. (A56)

Proceeding the same way as above, for any v less than or equal to γB ln(l̃B)−γA ln(1− l̃B),
there exists a v ∈

[
γB ln(1− l̃A)− γA ln(l̃A), V

)
that satisfies LA(v, v) = l̃A, where V does

not depend on v .This defines a continuous mapping v = mA(v).

Consider the following system of two equations with two unknowns:

v = mA(v), v = mB(v), (A57)

where mA(·) maps v ∈
(
−∞, γB ln(l̃B)− γA ln(1− l̃B)

]
to v ∈

[
γB ln(1− l̃A)− γA ln(l̃A), V

]
,

and mB(·) maps v ∈
[
γB ln(1− l̃A)− γA ln(l̃A),∞

)
to v ∈

[
V , γB ln(l̃B)− γA ln(1− l̃B)

]
.

Consider now a composition function m(v) ≡ mA(mB(v)). Function m(·) maps v ∈[
γB ln(1− l̃A)− γA ln(l̃A), V

]
into itself. Because m(v) is continuous, it has a fixed point v

by the intermediate value theorem. Then, v and v ≡ mB(v) satisfy equations (A57).

As demonstrated in Barro (2009), the price-dividend ratios in homogeneous-investor
economies populated by investors A and B, respectively, are given by:

ΨA = 1

ρ+ (1− γA)µD + (1− γA)γA
2 σ2

D − λ(1 + JD)1−γA
, (A58)

ΨB = 1

ρ+ (1− γB)(µD + σDδ) + (1− γB)γB
2 σ2

D − λB(1 + JD)1−γB
. (A59)

After simple algebra, it can be shown that ΨA = 1/(ρ̃−λ̃) and ΨA = 1/(ρ̃−µ̃−0.5σ̃2−λ̃e−J̃).
Therefore, assumption (A61) in Lemma A.1 is equivalent to conditions ΨA > 0 and ΨB > 0
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in Proposition 3. Moreover, investor’s value functions are bounded because∣∣∣∣∣Et
[∫ ∞

t
e−ρ(τ−t) (c∗iτ )1−γi

1− γi
dτ

]∣∣∣∣∣ =
∣∣∣∣∣Et

[∫ ∞
t

e−ρ(τ−t) s(vτ )1−γiD1−γi
τ

1− γi
dτ

]∣∣∣∣∣
≤ max {s(v)1−γi , s(v)1−γi}

|1− γi|
Et
[∫ ∞
t

e−ρ(τ−t)D1−γi
τ dτ

]

= max {s(v)1−γi , s(v)1−γi} ΨiD
1−γi
t

|1− γi|
< +∞.

(A60)

Finally, we note that our derivation of equilibrium assumes that payoff matrix is in-
vertible, which is equivalent to σt 6= 0, as demonstrated in Proposition 2. �

Lemma A.1 (Inequalities for ψ̂(x) and ψ̂′(x)). Suppose, the model parameters are
such that the following two inequalities are satisfied:

ρ̃− λ̃ > 0, ρ̃− µ̃− σ̃2

2 − λ̃e
−J̃ > 0, (A61)

where ρ̃, λ̃, µ̃, σ̃ and J̃ are given by equations (A29). Let function q(x) be given by

q(x) = 1− (ρ̃− λ̃)
∫ x

0
ψ̂(y)dy. (A62)

Then for all x > 0 and v > v the following inequalities are satisfied:

ψ̂(x) < 0, ψ̂′(x) < 0,

ψ̂(x)− ψ̂′(x) > 0,

q′(v − v)ψ̂(x)− q(v − v)ψ̂′(x) > 0.

(A63)

Furthermore, there exists z+ > 1 such that the following inequalities are satisfied:

ψ̂(x)− ψ̂′(x) >−ez+(x−1)(z+ − 1)ψ̂(1), for x ≥ 1, (A64)

ψ̂(x)− ψ̂′(x) <−ez+xψ̂′(0), for x > 0. (A65)

Proof of Lemma A.1. From definition (A35), ψ̂(x) satisfies equation:[
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

]
L
[
ψ̂(x)

]
= 1. (A66)

Dividing the above equation by z, applying inverse Laplace transform and using the fact
that ψ̂(0) = 0, we find that ψ̂(x) satisfies the following integro-differential equation:

σ̃2

2 ψ̂
′(x) = −1− µ̃ψ̂(x) + (ρ̃− λ̃)

∫ x

0
ψ̂(y)dy + λ̃

∫ x

max{x−J̃ ,0}
ψ̂(y)dy. (A67)

44



Letting x = 0 in equation (A67), we obtain ψ̂′(0) < 0. Therefore, because ψ̂(0) = 0,
ψ̂(x) < 0 in some neighborhood of 0. We first prove that ψ̂(x) < 0 for all x > 0. Suppose,
on the contrary, that there exists x > 0 such that ψ̂(x) ≥ 0. Let x = inf{x ∈ R+ : ψ̂(x) ≥
0}. By the continuity of ψ̂(x), we have ψ̂(x) = 0 and ψ̂(x) < 0 for x ∈ (0, x). Evaluating
equation (A67) at x, we obtain:

σ̃2

2 ψ̂
′(x) = −1− µ̃ψ̂(x) + (ρ̃− λ̃)

∫ x

0
ψ̂(y)dy + λ̃

∫ x

max{x−J̃ ,0}
ψ̂(y)dy

< −1− µ̃ · 0 + (ρ̃− λ̃)
∫ x

0
0 · dy + λ̃

∫ x

max{x−J̃ ,0}
0 · dy = −1.

(A68)

The inequality (A68) is satisfied because ρ̃− λ̃ > 0 by assumption (A61). However, ψ̂′(x)
being negative is inconsistent with x being the smallest positive number such that ψ̂(x) = 0
because ψ̂(x) cannot be a decreasing function at x. Therefore, we arrive at a contradiction,
and hence, ψ̂(x) < 0 for all x > 0.

Consider function h(z) ≡ ρ̃ − µ̃z − σ̃2

2 z
2 − λ̃e−J̃z. By assumption (A61), h(0) > 0

and h(1) > 0. It can be easily observed that h(−∞) = h(+∞) = −∞. Therefore,
by the intermediate value theorem there exist two real roots z− < 0 and z+ > 1 that
satisfy equation h(z) = 0. Furthermore, function h(z) is concave because h′′(z) < 0. The
concavity of h(z) implies that h(z) ≥ 0 for all z ∈ [z−, z+].

Let ẑ be any number such that ẑ ∈ [z−, z+], and let α̂(x) ≡ e−ẑxψ̂(x). Next, we
establish that α̂′(x) < 0 for all x ≥ 0. Differentiating equation (A67), we obtain:

σ̃2

2 ψ̂
′′(x) = −µ̃ψ̂′(x) + ρ̃ψ̂(x)− λ̃ψ̂(x− J̃)1x≥J̃ . (A69)

Substituting ψ̂(x) = eẑxα̂(x) into equation (A69), after some algebra, we find:

σ̃2

2 α̂
′′(x) = −(µ̃+ σ̃2ẑ)α̂′(x) + (ρ̃− µ̃ẑ − σ̃2

2 ẑ
2 − λ̃e−J̃ ẑ)α̂(x) + λ̃e−J̃ ẑ

[
α̂(x)− α̂(x− J̃)1x≥J̃

]
=−(µ̃+ σ̃2ẑ)α̂′(x) + (ρ̃− µ̃ẑ − σ̃2

2 ẑ
2 − λ̃e−J̃ ẑ)

∫ x

0
α̂′(y)dy + λ̃e−J̃ ẑ

∫ x

max{x−J̃ ,0}
α̂′(y)dy.

(A70)
We observe that α̂(0) = ψ̂(0) = 0, α̂′(0) = −ẑψ̂(0) + ψ̂′(0) < 0 because ψ̂(0) = 0 and
ψ̂′(0) < 0. The rest of the proof for α̂′(x) < 0 is similar to that of ψ̂(x) < 0. Consequently,
differentiating α̂(x) and dividing α̂′(x) < 0 by e−ẑx, we obtain:

ẑψ̂(x)− ψ̂′(x) > 0, for any ẑ ∈ [z−, z+]. (A71)

In particular for ẑ = 0 we find ψ̂′(x) < 0, and for ẑ = 1 we find ψ̂(x) − ψ̂′(x) > 0.
Therefore, we have proven the first three inequalities in (A63).
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Next, we prove (A64) and (A65). For x > 1, using inequality (A71) and the fact that
α̂(x) = e−ẑxψ̂(x) is a decreasing function, we establish inequality (A64) as follows:

ψ̂(x)− ψ̂′(x) = (1− z+)ψ̂(x) + (z+ψ̂(x)− ψ̂′(x)) > −ez+x(z+ − 1)(e−z+xψ̂(x))

> −ez+x(z+ − 1)(e−z+1ψ̂(1)).
(A72)

To prove (A65), let α̃(x) = −e−z+xψ̂′(x). Differentiating equation (A69) and rewriting it
in terms of α̃(x), we derive the following equation:
σ̃2

2 α̃
′′(x) = −(µ̃+ σ̃2z+)α̃′(x) + λ̃e−J̃z

+
α̃(x)− λ̃e−min{x,J̃}z+

α̃(max{x− J̃ , 0})

=−(µ̃+ σ̃2z+)α̃′(x) + λ̃e−J̃z
+
∫ x

max{x−J̃ ,0}
α̃′(y)dy +

[
λ̃e−J̃z

+ − λ̃e−min{x,J̃}z+]
α̃(0).

(A73)
Letting x = 0 in (A69), we find that ψ̂′′(0) = −2(µ̃/σ̃2)ψ̂′(0). Consequently,

α̃(0) = −ψ̂′(0) > 0 α̃′(0) = −ψ̂′′(0) + z+ψ̂′(0) = 2
σ̃2 (µ̃+ σ̃2

2 z
+)ψ̂′(0) < 0, (A74)

where the last inequality hold because z+ > 1 and z+(µ̃+0.5σ̃2z+) = ρ̃− λ̃e−J̃z+
> ρ̃− λ̃ >

0. Similar to the above, we show that α̃′(x) < 0. Hence, we derive (A65) as follows:

ψ̂(x)− ψ̂′(x) < −ψ̂′(x) = ez
+xα̃(x) < ez

+xα̃(0) = −ez+xψ̂′(0). (A75)

Finally, we prove the last inequality in (A63). We define β̂(x) = e−z
+xq(x) and next

prove that β̂′(x) < 0. Proceeding in the same way as above, we express equation (A67)
first in terms of q(x) and then in terms of β̂(x):

σ̃2

2 q
′′(x) = −µ̃q′(x) + ρ̃q(x)− λ̃q(max{x− J̃ , 0}), (A76)

σ̃2

2 β̂
′′(x) = −(µ̃+ σ̃2z+)β̂′(x) + λ̃e−J̃z

+
β̂(x)− λ̃e−min{x,J̃}z+

β̂(max{x− J̃ , 0})

= −(µ̃+ σ̃2z+)β̂′(x) + λ̃e−J̃z
+
∫ x

max{x−J̃ ,0}
β̂′(y)dy +

[
λ̃e−J̃z

+ − λ̃e−min{x,J̃}z+]
β̂(0).

(A77)
For x = 0 we observe that β̂(0) = q(0) = 1, β̂′(0) = −z+q(0) + q′(0) = −z+q(0) − (ρ̃ −
λ̃)ψ̂(0) = −z+ < 0. Moreover, it is easy to observe that

[
λ̃e−J̃z

+ − λ̃e−min{x,J̃}z+
]
β̂(0) ≤ 0

for all x. Proceeding in the same way as above, we find that β̂′(x) < 0, and hence,
q′(x) < z+q(x). Using the latter inequality and the fact that ψ̂(x) < 0, we derive the last
inequality in (A63) as follows:

q′(v − v)ψ̂(x)− q(v − v)ψ̂′(x)≥ z+q(v − v)ψ̂(x)− q(v − v)ψ̂′(x)

= q(v − v)
[
z+ψ̂(x)− ψ̂′(x)

]
> 0. �

(A78)
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Lemma A.2 (Inequality for consumption shares). Let s(vt) denote the consumption
share of investor A. Then, for all v ∈ R the following inequality is satisfied:

s(v)−γA(1− s(v)) ≤ 2γB+1ev + 2γAev/γB . (A79)

Proof of Lemma A.2. First, we rewrite equation (21) in the following equivalent form:

s(v)−γA(1− s(v))γB = ev. (A80)

When γB ≤ 1, from the above equation we obtain the following inequality:

s(v)−γA(1− s(v)) ≤ s(v)−γA(1− s(v))γB = ev. (A81)

For γB > 1 and 1− s(v) ≥ 1/2, we find that:

s(v)−γA(1− s(v)) ≤ 2γB−1s(v)−γA(1− s(v))γB = 2γB−1ev. (A82)

Finally, for γB > 1 and s(y) ≥ 1/2 we have the following inequality:

s(y)−γA(1− s(y)) ≤ 2γA−γA/γBs(y)−γA/γB(1− s(y)) < 2γAev/γB . (A83)

Combining all the inequalities (A81)-(A83), we obtain inequality (A79). �

Proof of Proposition 4. From equation (13) for the bond price and the fact that
1 = Bt(1 + rt∆t) we find that the riskless interest rate rt is given by:

rt = 1− Et[ξA,t+∆t/ξAt]
Et[ξA,t+∆t/ξAt]∆t

= 1− (1− λ∆t)Et[ξA,t+∆t/ξAt|normal]− λ∆tEt[ξA,t+∆t/ξAt|crisis]
Et[ξA,t+∆t/ξAt]∆t

,

(A84)

where ξA,t+∆t/ξAt is given by equation (29). We separately calculate Et[ξA,t+∆t/ξAt|normal]
and Et[ξA,t+∆t/ξAt|crisis], and then take the limit ∆t→ 0.

We start with the derivation of Et[ξA,t+∆t/ξAt|normal] when v < vt < v, and hence, by
continuity, for a sufficiently small ∆t the economy is unconstrained next period, so that
v < vt+∆t < v. In the unconstrained region ∆vt = µ̂v∆t+ σ̂v∆wt and the SPD is given by
(A8). From the expression for the SPD, using expansions (A93) and (A95), we obtain:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)
|normal

]
+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

∣∣∣normal
]

+ o(∆t)

= 1 + atµ̂v∆t+ btσ̂
2
v∆t− rA∆t− κAatσ̂v∆t+ o(∆t).

(A85)
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Conditioning on the crisis state, we have:

Et
[
ξA,t+∆t

ξAt

∣∣∣crisis
]

= (1− ρ∆t)(1 + µD∆t+ JD)−γA
(
s(max{v, vt + µv∆t+ Jv})

s(vt)

)−γA

= (1 + JD)−γA
(
s(max{v, vt + Ĵv})

s(vt)

)−γA
+ o(∆t).

(A86)
Substituting at and bt from (A94) into equation (A85), and then substituting (A85) and
(A86) into equation (A84), after simple algebra, we obtain the interest rate (48) for the
case v < vt < v.

Now, we derive rt at the boundaries v and v. The SPD is given by (29). Using
expansions (A93) and (A95), we obtain the following expansion:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)

×(1 + ∆Ut + 0.5(∆Ut)2)|normal
]

+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

+ ∆Ut − κA∆wt∆Ut + at∆Ut∆vt + 0.5(∆Ut)2
∣∣∣normal

]
+O(∆t),

(A87)
where ∆Ut is given by equation (A19). Using equation (25) for the process vt and equation
(A19) for ∆Ut, for a fixed vt and sufficiently small ∆t, we find that ∆vt and ∆Ut at the
boundaries are given by:

∆vt =


min(0, µv∆t+ σv∆wt), if vt = v,

max(0, µv∆t+ σv∆wt), if vt = v,
(A88)

∆Ut =


0, if vt < v,

max(0, µv∆t+ σv∆wt), if vt = v,
(A89)

We note that for a sufficiently small ∆t the sign of µv∆t+σv∆wt is solely determined by the
second term σv∆wt because it has higher order of magnitude

√
∆t. Volatility σv is positive

because under our assumptions investor A is more risk averse and more pessimistic. Using
the latter observation, substituting equations (A88) and (A89) into equation (A87) and
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computing the expectation, we obtain:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= 1+



(
at(µv − κAσv)

2 + btσ
2
v

2 + µv + κAσv + σ2
v

2 − rA
)

∆t

+σv(1− at)2
√

∆t+O(∆t), if vt = v,(
atµv − atκAσv + btσ

2
v

2

)
∆t+ atσv

2
√

∆t+O(∆t), if vt = v.

(A90)
We note, that Et

[
ξA,t+∆t/ξAt

∣∣∣crisis
]

is given by (A86). Substituting (A90) and (A86) into
equation (A84) for the interest rate rt, we obtain the expression for rt in (48) for the case
when vt is at the boundary.

To obtain the risk premium, we first decompose stock returns as follows:

∆St +Dt+∆t∆t
St

= µt∆t+ σt∆wt + Jt∆jt. (A91)

Multiplying both sides of the above equation by ξA,t+∆t/ξAt and taking expectations on
both sides, we obtain:

Et
[
ξA,t+∆t

ξAt

∆St +Dt+∆t∆t
St

]
= µt∆tEt

[
ξA,t+∆t

ξAt

]
+ σtEt

[
ξA,t+∆t

ξAt
∆wt

]
+ JtEt

[
ξA,t+∆t

ξAt
∆jt

]
.

On the other hand, from the equation for stock price (14) we find that:

Et
[
ξA,t+∆t

ξAt

∆St +Dt+∆t∆t
St

]
= 1− Et

[
ξA,t+∆t

ξAt

]
.

Combining the last two equations and the equation (A84) for the interest rate, we obtain:

µt − rt = −
(
σt

[
ξA,t+∆t

ξAt
∆wt

]
+ Jt

[
ξA,t+∆t

ξAt
∆jt

])
1 + rt∆t

∆t . (A92)

Then, proceeding in the same way as with the calculation of interest rates and using similar
expansions, we obtain equation (49) for the risk premium. �

Lemma A.3 (Useful expansions).

1) For small increment ∆vt = vt+∆t − vt the ratio
(
s(vt+∆t)/s(vt)

)−γA has expansion:

(
s(vt+∆t)
s(vt)

)−γA
= 1 + at∆vt + bt(∆vt)2 + o(∆t), (A93)
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where coefficients at and bt are given by:

at = (1− st)Γt
γB

, bt = 1
2γ2

B

(1− st)2Γ2
t + 1

2γ2
Aγ

2
B

st(1− st)Γ3
t , (A94)

Γt = γAγB/(γA(1 − s) + γBs) is the risk aversion of the representative investor and st is
consumption share of investor A that solves equation (21).

2) For the case JD = 0, the SPD in a one-investor economy can be expanded as follows:

e−ρ∆t
(
Dt+∆t

Dt

)−γA
= 1− rA∆t− κA∆wt + o(∆t), (A95)

where rA and κA are the riskless rate and the Sharpe ratio in an economy populated only
by investor A, given by:

rA = ρ+ γAµD −
γA(1 + γA)

2 σ2
D, κA = γAσD. (A96)

Proof of Lemma A.3. 1) We expand the ratio on the left-hand side of (A93) using Tay-
lor’s formula, and observe that at = (s(vt)−γA)′/s(vt)−γA and bt = 0.5(s(vt)−γA)′′/s(vt)−γA .
Differentiating, we obtain the following expressions for at and bt:

at = −γA
s′(vt)
s(vt)

, bt = γA(1 + γA)
2

(
s′(vt)
s(vt)

)2

− γA
2
s′′(v)
s(v) . (A97)

To find derivatives s′(v) and s′′(v), we differentiate equation (21) twice with respect to v,
and obtain two equations for the derivatives:

1 = −
(
γA
st

+ γB
1− st

)
s′(vt), (A98)

0 =
(
γA
s2
t

− γB
(1− st)2

)
(s′(vt))2 −

(
γA
st

+ γB
1− st

)
s′′(vt). (A99)

Finding s′(v) and s′′(v) from the system (A98)–(A99) and substituting them into expres-
sions (A97) for coefficients at and bt, after some algebra, we obtain expressions (A94).

2) Substituting Dt+∆t/Dt from (1) into equation (A95), after some algebra, we obtain:

e−ρ∆t
(
Dt+∆t

Dt

)
= e−ρ∆t (1 + µD∆t+ σD∆wt)−γA

= (1− ρ∆t)
(

1−
(
γAµD −

γA(1 + γA)
2 σ2

D

)
∆t− γAσD

)
+ o(∆t)

= 1− rA∆t− κA∆wt + o(∆t). �

(A100)
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Proof of Proposition 5. Consider a reflected arithmetic Brownian motion with reflecting
boundaries v and v, which follows dynamics dvt = µ̂vdt+ σ̂vdwt when v < vt < v, where wt
is a Brownian motion. The transition density for this process has been derived in closed
form in Veestraeten (2004), and is given by:

fv(v, τ ; vt, t) = 1√
2πσ̂2

v(τ − t)

+∞∑
n=−∞

exp

−2µ̂v
σ̂2
v

n(v − v)−

(
v − vt − µ̂v(τ − t) + 2n(v − v)

)2

2σ̂2
v(τ − t)



+ exp

−2µ̂v
σ̂2
v

(
vt − v + n(v − v)

)
−

(
v − vt − µ̂v(τ − t) + 2(vt − v + n[v − v])

)2

2σ̂2
v(τ − t)




+ 2µ̂v
σ̂2
v

+∞∑
n=0

[
exp

(
−2µ̂v
σ̂2
v

(
v − v + n[v − v]

))
N
(
vt + µ̂v(τ − t)− v − 2(v − v + n[v − v])

σ̂v
√
τ − t

)

− exp
(

2µ̂v
σ̂2
v

(
v − v + n[v − v]

))(
1−N

(
vt + µ̂v(τ − t)− v + 2(v − v + n[v − v])

σ̂v
√
τ − t

))]
,

(A101)
whereN (·) is the cumulative distribution of a standard normal distribution. By Fv(v, τ ; vt, t)
= Prob{vτ ≤ v|vt} we denote the corresponding cumulative distribution function of v
conditional on observing vt at time t. We observe that st = s(vt) is a decreasing func-
tion of vt implicitly defined by equation (21), and hence there exists a well-defined in-
verse function, which can be obtained from the same equation (21), and is given by:
s−1(x) = γB(1− s)− γA ln(s). The cumulative distribution function of consumption share
sτ at time τ conditional on observing st at time t can then be found as follows:

F (x, τ ; st, t) = Prob{sτ ≤ x|st} ≡ Prob{s(vτ ) ≤ x|st}

= 1− Prob{vτ ≤ s−1(x)|vt}

= 1− Prob{vτ ≤ γB ln(1− x)− γA ln(x)|vt}

= 1− Fv(γB ln(1− x)− γA ln(x), τ ; vt, t).

(A102)

Substituting vt = γB ln(1 − st) − γA ln(st) into (A102), differentiating CDF F (x, τ ; st, t)
with respect to x and setting x = s, we find that the transition PDF for s is given by:

f(s, τ ; st, t) =
(
γA
s

+ γB
1− s

)
fv
(
γB ln(1−s)−γA ln(s), τ ; γB ln(1−st)−γA ln(st), t

)
, (A103)

where transition density fv(v, τ ; vt, t) is given by equation (A101).
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The stationary distribution of variable v, calculated in Veestraeten (2004), is given by:

fv(v) = 2µ̂v
σ̂v

exp
(
(2µ̂v/σ̂2

v)v
)

exp
(
(2µ̂v/σ̂2

v)v
)
− exp

(
(2µ̂v/σ̂2

v)v
) . (A104)

Proceeding in the same way as for the derivation of transition PDF (A103), we obtain
stationary PDF (50) for consumption share s. �

Proof of Corollary 1. From the fact that γA = γB = γ we obtain that µ̂v = −0.5δ2 and
σ̂v = δ, where µ̂v and σ̂v are defined in Proposition 5. Therefore, 2µ̂/σ̂2

v = −1. Substituting
2µ̂/σ̂v = −1 into equation (50) for the PDF of consumption share s we obtain PDF (51)
for the case of equal risk aversions. �

Proof of Corollary 2. The proof easily follows by substituting boundary conditions (35)
into the equation (45) for volatility σt at the boundary values v and v. �
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