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A multifactor self-exciting jump diffusion approach for modelling the
clustering of jumps in equity returns

Abstract: This paper introduces a new jump diffusion process where the occurrence
and the size of past jumps have an impact on both the instantaneous and the long term
propensities of observing a jump instantaneously. Here, the intensity of jump arrival is
a multifactor self-excited process whereas the jump size is a double exponential random
variable. This specification capture many dynamic features of asset returns; it can for
instance handle with the jump clustering effects explored by Ait-Sahalia et al. (2015).
Moreover, it remains analytically tractable, as we can prove that these multifactor self-
excited processes are similar to single factor processes whose kernel function is the sum of
two exponential functions. We can derive various closed and semi-closed form expressions
for the mean and the variance of the intensity as well as for the moment generating of log
returns. We also find a class of changes of measure that preserves the dynamics of the
process under the risk neutral measure. To motivate empirically the multifactor model,
we calibrate the model by a peak over threshold approach and filter state variables by
sequential Monte Carlo algorithm. We also investigate if self-excitation is induced by
positive, negative or both jumps. So as to illustrate the applicability of our modeling
for derivatives, we next evaluate European options and analyze the sensitivity of implied
volatilities to parameters and factors.

JEL Codes: G10, G11.
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1 Introduction

The propensity of price jumps to cluster over several days has been recently documented
in the financial markets1. The phenomenon has been specifically studied and evidenced
by Yu (2004) and by Maheu and McCurty (2004) who consider respectively DJIA returns
and a list of individual stock returns. More recently, Ait-Sahalia et al (2015) explore
international equity market indices on a daily basis and conclude that “Jump clustering
in time is a strong effect in the data”. They also notice that from “mid-September to
mid-November 2008, the US stock market jumped by more than 5% on 16 separate days”
(see footnote 2, page 587).

This jump clustering phenomenon dramatically questions the traditional understand-
ing of equity market dynamics, as well as the common practices, the routines and the needs
for relevant tools of managers, academics and regulators2... With no surprise, a recent
strand of the literature makes significant efforts to understand the cause of the clustering
of jumps, to develop quantitative methods to model this phenomenon3 and to investigate
implications of it for asset pricing, option pricing and risk management. The why we
observe some jumps in equity prices has been especially questioned and investigated with
high-frequency data and there is a broad consensus in this literature that news releases
impact a lot at both the individual and market levels (see e.g. Lee and Mykland (2008)
and Evans (2011) for additional evidences)4. More generally, it is widely believed that
the information flow matters (see Rangel 2011, Lee 2012 and Fulop et al. 2015 who even
advocate the use of a Bayesian learning approach). As noticed by Maheu and McCurdy
(2004), this flow may explain some clustering effects (“Like the information process itself,
jumps tend to be clustered together”). Beyond that, “market crashes can be realized in a
series of jumps over a short period”.

A recent, natural5 and endogenous way to capture clustering of jumps in the daily

1The clustering of jumps is a very common feature in high-frequency data. But we mainly keep this
very rich issue and literature out of the scope of the present research. Interested readers may nevertheless
find some references below.

2Portfolio managers may be, e.g., highly interested in estimates of how often unexpected jumps can
occur.

3A rich strand of the literature, out the scope of this article, aims at developping statistical tests
capable to detect the jumps. The core challenge of this literature is to disentangle extreme realizations of
a continuous process and jumps.

4Lee and Mykland (2008) conclude that the individual stock jumps are linked to company-specific news
events (such that scheduled earnings announcements but also unscheduled news), while the “S&P 500
Index jumps are associated with general market news announcement”. More recently, Lee (2012) goes a
step further by analyzing the predictability of jumps in individual stock returns, using both macroeconomic
and firm-specific news releases.

5It is worth noticing that many stochastic processes commonly used for modeling jumps are unable
to capture the jump clustering effect. Lévy processes, for instance, are very useful to accommodate the
skewness and the excess kurtosis of financial security returns, but they are unable to deal with the jump
clustering. They are indeed Markovian and have independent increments (see Schoutens (2003) ). In
addition, the clustering of jumps has been ’latent’ in many research on daily dynamics far before the
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price dynamics is to use self-exciting point processes where the jump arrival intensity at a
given point in time (which is the probability to observe a jump instantaneously) depends
on the number and sometimes the size of jumps the price of the asset experiments before.
This approach is linked to the Hawkes self-exciting processes (see Hawkes (1971a, b) and
Hawkes and Oakes (1974))6. In the most common and simplest specification, the jump
arrival intensity process is persistent and it suddenly increases as soon as a jump occurs in
the asset price. Moreover, the jump influence on the intensity does not depend on its size
and it decays over time more or less rapidly according to a kernel function. Different types
of Hawkes self-exciting processes have been recently introduced for modelling the daily
dynamics of financial assets. Aı̈t-Sahalia et al. (2014, 2015) develop a multidimensional
setting with self and mutual excitations in order to question whether some jumps result
from some contagion effects. The jump arrival intensity processes depend there on the
number of realized jumps, not associated sizes. By so doing, Ait-Sahalia et al (2014, 2015)
can disentangle the time excitation and the space excitation and they provide evidence
that the mutual excitation matters to explain the clustering of jump. Carr and Wu (2016),
Chen and Poon (2013) and Fulop et al. (2015) rather develop mono-asset settings where
the role of the jump size and, in particular, the negative jumps associated to bad news is
key to evaluate asset risk, option prices and variance risk premia.

In this paper, we partly follow previous contributions by exploring whether the number
and the size of past jumps can increase the probability to observe a jump in the next
future. But we go a step further by introducing a multifactor self-excited jump diffusion
(SEJD) process. Here the self-exciting contemporaneous jump arrival intensity reverts
towards a long-run mean intensity which itself follows a self-exciting Hawkes process. Our
modelling approach is multifactor because the jumps are led by two dependent states
variables: the contemporaneous jump intensity and its long-run mean level7. The other
distinctive features of our model are that the size of the realized jumps can impact the
two variables and that all past jumps can impact. This is different from Aı̈t-Sahalia et

advent of Hawkes self-exciting process, because jump clustering is a characteristic of any jump model
equipped with a time-varying and persistent conditional intensity (see Chan and Maheu (2002), for a
typical example). For the sake of modelling daily returns, a discrete jump component has early been
included in the price dynamics to accomodate the infrequent large price movements (see Press (1967),
Merton (1976)), but the need for a time-varying jump intensity has been recognized for years. Bates
(2000) develops a continuous-time setting where the jump intensity depends on the level of a stochastic
volatility (see also Andersenet al. (2002), Pan (2002) and Eraker (2004)). Duffie et al. (2000) generalize
the approach by assuming that the jump intensity may be an affine function of a latent variable. An far
simpler way to allow the jump arrival intensity to vary over time is to add some dummy variables for days,
as Das (2002) did for modelling jumps in interest rates, or for the week-end (see Fortune (1999)).

6This set of point processes is also commonly used for modelling ’high-frequency’ data. Engle and
Russell (1998) point out the fundamental role of Hawkes self-exciting processes in the modelling of duration
between two transactions. Readers interested by high-frequency applications may consult Giot (2005),
Hewlett (2006), Bowsher (2007), Large (2007), Chavez-Demoulin and McGill (2012), Bacry et al (2013)
and Da Fonseca and Zantour (2014) for more recent contributions. Bauwens et Hautsch (2009) offer an
overview.

7Hence, this bifactor approach should not be confused with the one of Aı̈t-Sahalia et al. (2015 a,b)
where the bifactor feature refers to the number of financial assets simultaneously taken in account.
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al. (2014, 2015) where the size of the realized jumps does not matter and from Carr and
Wu (2016) and others who take in account only negative ones. The main intuition of our
specification is that the occurrence and the size of past realized jumps can influence not
only the instantaneous probability of observing a new jump (as usual) but also its long-
run mean level, that is the level to which the jump intensity reverts. In our model, both
state variables are impacted by the previous occurrences of shocks and their realized sizes
in absolute terms. Several jump distributions are tested: positive exponential, negative
exponential, double exponential and binomial laws. This means that our model nests the
dynamics of Kou (2002) as a special case. Note also that we work with this distribution
for its flexibility, but most of our conclusions apply to other size distributions.

The contributions of this paper are multiple and various. First and mainly, we introduce
a new multifactor self-exciting Hawkes process that can investigate a possible impact of
price jumps on the long-run mean toward which the jump arrival intensity reverts. We
provide a number key properties of this new process and demonstrate, among other things,
that the jump arrival intensity associated to our multifactor specification may be viewed
as the intensity of an single factor self-exciting equipped with a complex kernel function.
In theory, our model captures then a larger spectrum of dynamics than common self-
exciting Hawkes processes with exponentially decreasing kernels Moreover, our model is
highly tractable from a ’stochastic calculus’ perspective8. We can indeed obtain analytical
expressions for the first two centered moments of state variables and a semi closed form
expressions for their moment generating functions. We show that the expectation and
variance of the jump arrival intensity also depends upon a sum of exponential functions.
For the sake of pricing financial and derivatives contracts, we identify a family of changes
of measure that preserves the structure of our specification and we use this to define a
risk neutral measure. We provide analytical pricing formulas for realized variances. For
calibration purposes, we develop an assymmetric peak over threshold procedure. Next, a
sequential Monte Carlo procedure is used to filter accurately the hidden states variables
and to appraise the likelihood. We explore the empirical performance of our model on
daily returns of various financial time series collected over a period of ten years (S&P
500 index). Our analysis also determines which is the most appropriate distributions for
jumps, among the positive, negative, double exponential and binomial laws. And the
results reveal that the self-excitation is also induced by positive shocks, and not only
by negative ones as suggested by Carr & Wu (2016). Next options are priced with the
recourse to a Fast Fourier Transform technique to compute the probability density of the
asset return from the moment generating function of log return.

The paper proceeds as follows. Section 2 presents the continuous time framework. Sec-
tion 3 discusses calibration issues and contains an empirical analysis. Section 4 illustrates

8Consequently, our specification represents an interesting compromise between the pure Hawkes process
whose exponentially decreasing is not always supported by financial data (see Embrechts et al. (2011) or
Bacry et al. (2013)) and more intricate self-exciting processes, that certainly match better the empirical
data but whose associated jump arrival intensity is in general no more a Markov process. This is of course
a serious problem, because one cannot use standard tools of stochastic calculus anymore.
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the applicability of the framework to the pricing of derivatives. We conclude in section 5.
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2 A new multifactor SEJD model for the equity price

2.1 The framework

Consider a probability space (Ω,F ,P) equipped with a right continuous filtration {Ft}t≥0

on which is defined the price process of a stock index denoted by S = (St)t . We assume
that the stock index price is governed by the following stochastic differential equation

dSt
St−

= µdt+ σdWt + d

 Nt∑
j=1

(
eJj − 1

)− λtE (eJ − 1
)
dt (1)

= µdt+ σdWt +
(
eJ − 1

)
dNt − λtE

(
eJ − 1

)
dt (2)

where µ is a constant drift term, dWt stands for the increment of the Brownian motion
W = (Wt)t, σ is a constant diffusion coefficient (σ ∈ R+) and the final terms of the
above stochastic differential equations highlight the influence of jumps that can occur in
the interval (t−, t+ dt). The second equality arises naturally because the probability to
observe more than one jump in an infinitesimal period is negligible9. The last equation
may also be rewritten

d lnSt =

(
µ− σ2

2
− λtE

(
eJ − 1

))
dt+ σdWt + JdNt

The process N = (Nt)t informs on the number of jumps observed before time t, the
sequence of i.i.d. random variables (Jj)j on the size of the return jumps. Each random
size (Jj) is an independent copy of a random variable J . We denote by µJ the expected
jump size in absolute term, i.e. E (|J |) = µJ which is of course a positive real number.
In numerical applications, several distributions for J are tested: positive and negative
exponential, double exponential and binomial laws. Double exponential jumps (DEJ)10

are defined by three parameters (p, ρ+, ρ−) and their features are reminded in appendix
A. Strictly positive or negative jumps are particular case of the DEJ. But testing them,
allows us to emphasize later that self-excitation is not only by negative jumps as in Carr
and Wu (2016) but also by positive ones. Binomial jumps, also defined by parameters
(p, ρ+, ρ−), are constant and take either a positive or a negative value. The solution of
the previous stochastic differential equation is

St = S0 exp

(µ− σ2

2

)
t− E

(
eJ − 1

) ˆ t

0
λsds+ σWt +

Nt∑
j=1

Jj


9The first equality is useful for estimation purposes and in particular to find an appropriate Euler ap-

proximation because the time interval between two discretely sampled data is not necessarily infinitesimal.
10Assuming a constant jump arrival intensity for the point process N makes our model specification

similar to the one introduced by Kou (2002). Actually, this author introduces the double exponential
distribution to model jumps in returns that can be positive or negative. For the reader’s convenience,
we recall in the appendix some general results about this nowadays standard distribution. It is worth
emphasizing that the Lévy process considered by Kou (2002) is unable to accomodate the clustering of
jumps documented by Aı̈t-Sahalia et al (2015) and others.
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The jump arrival intensity, denoted by λ = (λt)t, evolves over time according to the
stochastic differential equation

dλt = α (θt − λt) dt+ ηd

(
Nt∑
i=1

|Ji|

)
(3)

= α (θt − λt) dt+ η |J | dNt. (4)

The jump arrival intensity hence reverts with a reversion speed α ∈ R+ to a long-run
mean level θt that is time-varying. As jumps may be positive or negative, the variation
of intensity is proportional to the absolute value of the jump of price. In Aı̈t-Sahalia et
al. (2015), the shock on intensity caused by a jump is constant and depends only on the
counting process Nt. Instead, our model links this shock to the amplitude of jumps. To
capture our intuition that past realized jumps in the underlying price process may impact
both the instantaneous and long run propensities of observing jumps, one assumes that
the behavior of the time-varying long-run mean θt is itself mean-reverting, self-exciting
and described by

dθt = β (γ − θt) dt+ δd

(
Nt∑
i=1

|Ji|

)
. (5)

= β (γ − θt) dt+ δ |J | dNt (6)

where β ∈ R+ is the speed of mean reversion and γ ∈ R+ the level toward which the
long-run mean reverts.

The system of stochastic differential equations (1), (3) and (5) fully characterizes
our multifactor self-exciting jump diffusion model. This setting deserves some general
comments. First, it is clear that any jump can impact directly and indirectly the price
process. Second, equations (3) and (5) show that the realized jumps in the underlying price
process can simultaneously modify the jump arrival intensity λ = (λt)t and its long-run
mean level θ = (θt)t. Nevertheless, η ∈ R+ and δ ∈ R+ are two constant parameters tuning
the influence of past realized jumps on these two processes11. Third, equations (7) and (9)
are both satisfied because the probability to observe more than one jump in an infinitesimal
period is almost surely zero. Fourth and in case we can identify the sequence of event/jump
times by (Tn)n≥0, the counting process N = (Nt)t may be written by Nt =

∑
n≥1 1{Tn<t},

where 1A is the indicator function of event A. Fifth and lastly, if one considers the marked
point process L = (Lt)t defined by Lt =

∑Nt
i=1 |Ji| =

∑
n≥1 |Jn| 1{Tn<t} i.e. the sum of the

absolute values of jumps in the asset price up to time t. Then, one may rewrite the jump

11Consequently, we can investigate their respective value and whether they are equal. If these parameters
are different from zero, then any realization of a jump immediately increase the instantaneous probability
of observing an other jump and the long-run level toward which this intensity process tends to mean-
revert. And testing whether η and δ are different from zero is equivalent to testing whether self-excitation
matters in these processes. If these parameters are equal, then any realization of a jump impact λ and θ
simultaneously.
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terms in equations (3) and (5) in terms of the increment of L denoted by dLt. Moreover,
a direct integration of equation (5) leads to

θt = γ + (θ0 − γ) e−βt +

ˆ t

0
δe−β(t−s)dLs.

The exponential function (e−β(t−s)) in this expression highlights that the influence of a
realized jump on the long-run mean level θ decays over time exponentially. This solution
must be then plugged into equation (3) and, in the next section, we can derive the analyt-
ical expression for the jump arrival intensity when the long-run mean level is stochastic.
If θt were constant and say equal to θ, then the solution to equation (3) would simply be

λt = θ + (λ0 − θ) e−αt +

ˆ t

0
ηe−α(t−s)dLs (7)

and the exponential function ηe−α(t−u) ≡ φsingle (u) would be the kernel function (or mem-
ory) of the jump arrival intensity process. It must be stressed that this latter expression
may seem familiar to whom knows the Hawkes process, but this process is not standard
at all, Remind that the marked point process L depends on the realized jumps in absolute
terms. Consequently, we will provide in the rest of this article results for the general
process as well as for this simpler but new mono-factor process.
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2.2 Analyzing the jump feature of the multifactor SEJD model

This section focuses on the jump dimension of our multifactor SEJD model. We provides
various results and analytical expressions that can help understanding the main features
of our general model. Before entering the core of this section, it is important to notice
that the jump arrival intensity process λ = (λt)t is not Markov, but the joint process (λ,
θ, N) is. So, to apply standard results of stochastic calculus, one must often consider the
processes λ = (λt)t, θ = (θt)t and N = (Nt)t jointly. We study first λ = (λt)t, θ = (θt)t
that are the state variables that govern the jump process. But then we consider the joint
process (λ, θ, N) which is equivalent to (λ, θ,

´
λsds). We finally say some words of any

regular function of our state variables.

Proposition 1 provides an analytical expression for the value of the jump arrival inten-
sity at time t in our multifactor self-exciting jump diffusion model. It reveals among other
things that the kernel function of the jump arrival intensity is the sum of two exponential
functions.

Proposition 1: The jump arrival intensity of the multifactor self-excited process ad-
mits the following expression

λt = γ + (λ0 − γ) e−αt + (θ0 − γ)
α

α− β

(
e−βt − e−αt

)
+

ˆ t

0
φbi (u) dLu (8)

where the kernel function is

φbi (u) =
αδ

α− β
e−β(t−u) −

(
αδ

α− β
− η
)
e−α(t−u)

if α 6= β and

λt = γ + (λ0 − γ) e−αt + (θ0 − γ)αte−αt +

ˆ t

0
φ (u) dLu

φ (u) = δαe−α(t−u) (t− u) .

otherwise.

Proposition 1 highlights that the kernel function of the jump arrival intensity, in our
multifactor setting, is a (weighted) sum of two exponential functions. This kernel function
of the multifactor jump process (the multifactor kernel function for short) may also be
rewritten

φbi (u) = ηe−α(t−u) + δ
α

α− β

(
e−β(t−u) − e−α(t−u)

)
= ηe−α(t−u) + δe−β(t−u)α

[
1− e−(α−β)(t−u)

α− β

]
, for u < t
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The last expression highlights the meaningful functions ηe−α(t−u) and δe−β(t−u). These
expressions in turn calls for two remarks. First, the multifactor kernel function nests the
function ηe−α(t−u) as a special case (just set δ to zero), meaning that the multifactor jump
process can capture a larger spectrum of stochastic behaviors than the single factor jump
process. Second, the second term of the r.h.s. (δ α

α−β
(
e−β(t−u) − e−α(t−u)

)
) is positive

whatever the values of α and β. So, assuming that all parameter estimates can be similar,
the multifactor kernel function will be at least as large as the single factor one, meaning
that the influence of a realized jump on the intensity may last longer in our bifactor setting.
Of course, this cannot be the case because the parameter estimates will compensate for this
effect. Actually, both models tend to capture the same reality... so that we can anticipate
that in the empirical investigations, the single factor kernel function tend to ”capture’,
summarize’ or ’average’ the information content of the multifactor kernel function.

Proposition 2: If (β − (ηµJ − α))2 + 4 (δµJα+ β(ηµJ − α)) ≥ 0, the expectations
of θt and λt are given by(

E (θt|F0)
E (λt|F0)

)
= V

(
1
γ1

(
eγ1t − 1

)
0

0 1
γ2

(
eγ2t − 1

) )V −1

(
γβ
0

)
(9)

+ V

(
eγ1t 0
0 eγ2t

)
V −1

(
θ0

λ0

)
where γ1, γ2 are constant given by

γ1 =
1

2
((ηµJ − α)− β) +

1

2

√
(β − (ηµJ − α))2 + 4 (δµJα+ β(ηµJ − α)) (10)

γ2 =
1

2
((ηµJ − α)− β)− 1

2

√
(β − (ηµJ − α))2 + 4 (δµJα+ β(ηµJ − α))

and V is a matrix defined by

V =

(
−δµJ −δµJ
−β − γ1 −β − γ2

)
whose determinant and inverse are respectively equal to Υ = δµJ (γ2 − γ1) and V −1 =

1
Υ

(
−β − γ2 δµJ
β + γ1 −δµJ

)
. An important consequence of this proposition is that the model

is stable (in the sense that the limits of λt and θt exist when t → +∞) if and only if
γ1 and γ2 are negative. In view of expressions (10), this means that the sum (α+ β) is
significantly larger than ηµJ . Hereafter, we constrain structural parameters so as to imply
negative values for γ1 and γ2 and to ensure a stable jump model. We will see later that α
is constrained to be larger than ηµJ . Throughout the rest of the paper, we assume that
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α 6= β. Under these conditions, the above asymptotic expressions become

lim
t→∞

(
E (θt|F0)
E (λt|F0)

)
= V

(
− 1
γ1

0

0 − 1
γ2

)
V −1

(
γβ
0

)
(11)

=

 γβ
(
−β 1

γ1γ2
− (γ2+γ1)

γ1γ2

)
− (β + γ2) (β + γ1) γβ

δµJ

(
1

γ1γ2

) 
where γ1 and γ2 are defined in proposition 2.2. Plugging there (β + γ2) (β + γ1) = −δµJα
and γ1γ2 = β (α− ηµJ)− δµJα (computed in the appendix) allows us to rewrite

lim
t→∞

(
E (θt|F0)
E (λt|F0)

)
=

(
γ β(α−ηµJ )
β(α−ηµJ )−αδµJ

γ αβ
β(α−ηµJ )−αδµJ

)
.

And a couple of comments deserve to be done. First, because we constrain γ1 and γ2 to be
negative, γ1γ2 = β (α− ηµJ) − δµJα is positive and (α− ηµJ) too. So these asymptotic
values are well-defined. In addition, they share a common term so that we can write

lim
t→∞

(E (θt|F0)) = lim
t→∞

E (λt|F0)− βηµJ
β (α− ηµJ)− αδµJ

and, by design, the asymptotic value for θ is lower than the one for λ. Finally, the equation
(9) may be rewritten

E (λt|F0) =
1

Υ

[
(β + γ2) (β + γ1)

(
γβ

γ1
+ θ0

)
− (β + γ1) δµJλ0

]
eγ1t −

1

Υ

[
(β + γ2) (β + γ1)

(
γβ

γ2
+ θ0

)
− (β + γ2) δµJλ0

]
eγ2t +

1

Υ
(β + γ2) (β + γ1)

(
γβ

γ2
− γβ

γ1

)
: = υ1e

γ1t − υ2e
γ2t + υ3. (12)

to highlight that the expected value of λt is an affine function of exponentials.

The next proposition provides a general decomposition (in two terms) of the variance of
the jump arrival intensity and it provides an explicit expression for it. This decomposition
highlights the key role of the kernel function in the computation of the variance. So we
expect the variance to be significantly influenced by the shape of the kernel function.

Proposition 3: The variance of the jump arrival intensity λt may be written

V (λt|F0) = E(J2)

ˆ t

0
φbiv (u)2 E (λu|F0) du
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where

ˆ t

0
φbi (u)2 E (λu|F0) du = ε3

υ3

α+ β

(
1− e−(α+β)t

)
+ (13)

ε1

[
υ1

γ1 + 2β

(
eγ1t − e−2βt

)
− υ2

γ2 + 2β

(
eγ2t − e−2βt

)
+
υ3

2β

(
1− e−2βt

)]
+

ε2

[
υ1

γ1 + 2α

(
eγ1t − e−2αt

)
− υ2

γ2 + 2α

(
eγ2t − e−2αt

)
+
υ3

2α

(
1− e−2αt

)]
+

ε3

[
υ1

γ1 + α+ β

(
eγ1t − e−(α+β)t

)
− υ2

γ2 + α+ β

(
eγ2t − e−(α+β)t

)]

with ε1 =
(

αδ
α−β

)2
, ε2 =

(
η − αδ

α−β

)2
and ε3 = 2

(
αδ
α−β

)(
η − αδ

α−β

)
. When the jump size

has a binomial, simple or double exponential distribution, its second moment E(J2) admits
a closed form (see appendix A).

Whether the process is stable γ1 and γ2 are negative, the limit of V (λt|F0) for t→∞
is constant as all exponential terms in equation (13) decay to zero:

Corollary 1: The asymptotic variance of λt is independent from the initial value for
the process and equal to

lim
t→∞

V (λt|F0) = −E(J2)
γβ (β + γ2) (β + γ1)

δµJγ2γ1
×[

2

(
αδ

α2 − β2

)(
η − αδ

α− β

)
+

(
αδ

α− β

)2 1

2β
+

(
η − αδ

α− β

)2 1

2α

]

The probability of observing no jump over an interval of time [0, T ] may be computed
by considering the following expression

P [NT = 0] = E
[
exp

(
−
ˆ t

0
λudu

)
|F0

]
.

Actually, this expression is just a special case of the joint moment generating function

of the triplet
(

Λt ≡
´ t

0 λudu, λt, θt

)
. The next proposition provides a semi closed form

expression for this useful function.

Proposition 4: Let us define ψ (z1, z2) := E
(
ez1J+z2|J |

)
. The joint moment generat-

ing function of Λs, λs and θs is given by

E
(
eω0Λs+ω1λs+ω2θs | Ft

)
= exp (A(t, s) +B(t, s)λt + C(t, s)θt + ω0Λt) .

13



where A(t, s), B(t, s) and C(t, s) satisfy the system of ODE’s
∂A
∂t = −βγC
∂B
∂t = αB − [ψ (0, Bη + Cδ) + ω0 − 1]
∂C
∂t = −αB + βC

. (14)

with the terminal conditions A(s, s) = 0, B(s, s) = ω1 and C(s, s) = ω2.

The closed form expression of ψ (z1, z2) is provided in appendix. There does not exist
any closed form expressions for A(t, s), B(t, s) and C (t, s). However, one may compute
them by an Euler’s method. The result of Proposition 4 is especially useful because one
can now compute a number of by-products such as the probability of no jump over a
certain period of time (see above), the probability density function of λt or of θt, etc.
Notice also that proposition 4 serves us in a following section to identify the dynamics of
jumps under affine equivalent measures. Before closing this passage on the state variables,
it is worth mentioning some available results for any stochastic process Y = (Yt)t defined
by Yt = f(t, λt, θt) where f is a regular function of time, of the intensity and of the mean
reversion level. Firstly, the infinitesimal generator associated to the underlying jump
process is

Af = ft + α(θt − λt) fλ + β (γ − θt) fθ

+λt

ˆ +∞

0
[f (t, λt + η |z|, θt + δ |z|)− f (t, λt, θt)] dν(z).

Second, the dynamics of Y can be described by

dYt = [ft + α(θt − λt) fλ + β (γ − θt) fθ] dt+ [f (t, λt + η |J |, θt + δ |J |)− f (t, λt, θt)] dNt.

We can have a look at the equity price. Next proposition first of derives derives the
moment generating function of the log return of St denoted by Xt := ln St

S0
.

Proposition 5: If ψ (z1, z2) := E
(
ez1J+z2|J |

)
, the moment generating function of

ω1Xs for s ≥ t, is given by

E
(
eω1Xs | Ft

)
=

(
St
S0

)ω1

exp (A(t, s) +B(t, s)λt + C(t, s)θt) .

where A(t, s), B(t, s) and C(t, s) are solutions of the system of ODE’s
∂A
∂t = −ω1

(
µ− σ2

2

)
− ω2

1
σ2

2 − βγC
∂B
∂t = αB + ω1 (ψ (1, 0)− 1)− [ψ (ω1 , B η + C δ)− 1]
∂C
∂t = −αB + βC

. (15)

with the terminal conditions A(s, s) = 0, B(s, s) = 0 and C(s, s) = 0.
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The next proposition provides an explicit expression for the realized variance and its
expectation as measured by the quadratic variation of instantaneous returns.

Proposition 6: The realized variance, measured as the quadratic variation of
´ t

0
dSs
Ss

over the period [0, T ] is given by

σ2
R(T ) = σ2T +

ˆ T

0

(
eJu − 1

)2
dNu. (16)

Its expectation is equal to

E
(
σ2
R(T ) | F0

)
= σ2T + E

((
eJ − 1

)2)ˆ T

0
E (λu | F0) du (17)

where
´ T

0 E (λu | F0) du is provided by equation (12). E
((
eJ − 1

)2)
is provided in appendix

A for binomial, simple and double exponential jumps.

This last proposition reveals that the curve of expected realized variances is a mixture
of exponential functions. The expected realized volatility does not admit any semi-closed
form expression. However Brockhaus and Long (2000) suggest the following approxima-
tion, that is the second order expansion for

√
x, for its evaluation:

E
(√

σ2
R(T ) | F0

)
=

√
E
(
σ2
R(T ) | F0

)
−

V
(
σ2
R(T ) | F0

)
8E
(
σ2
R(T ) | F0

) 3
2

where the variance of the realized variance is provided by the next proposition

Proposition 7: The variance of σ2
R(T ) is equal to

V
(
σ2
R(T ) | F0

)
=

1

T 2
E
((
eJ − 1

)4) ˆ T

0
E (λu | F0) du

where
´ T

0 E (λu | F0) du is provided by equation (12). E
((
eJ − 1

)4)
is provided in appendix

A for binomial, simple and double exponential jumps. This result is a direct consequence

of the expression (16) for the realized variance.

2.3 The single factor model

It is now interesting to stress the difference of our multifactor self-exciting jump multi-
factor model with the model where θt is a constant θ. Let’s have a look at the different
expressions. The expected jump arrival intensity is then given by

E (λt | F0) = λ0e
−(α−ηµJ )t + λ∞

(
1− e−(α−ηµJ )t

)
(18)
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where λ∞ = α
α−ηµJ θ. This expression is well defined and meaningful if α − ηµJ > 0. As

expected, the expected value of the jump arrival intensity tends to a constant as t becomes
large. Some readers may be surprised that this long-run mean level is λ∞ = α

α−ηµJ θ and
not θ. The reason for this is that the jump term in the dynamics of λ is not compensated
and it thus has no zero expectation. The equivalent compensated process would have the
following dynamics:

dλt = a (λ∞ − λt) dt+ (η |J | dNt − λtηµJdt)

but may lead to a negative intensity. This expression is far simpler than the one associated
to the multifactor jump process. The variance of the jump arrival intensity satisfies

V (λt|F0) = E(J2)

ˆ t

0
φsingle (u)2 E (λu|F0) du

where E (λu|F0) is given by equation (18) and φsingle (u) = ηe−α(t−u). This expression is
similar to the one provided by Proposition 3. And after simplification, the variance has
the following form

V (λt|F0) = E(J2)

[
η2(1− λ∞)

α+ ηµJ

(
e−(α−ηµJ )t − e−2αt

)
+
η2λ∞

2α

(
1− e−2αt

)]
,

that converges asymptotically to the next constant:

lim
t→∞

V (λt|F0) = E(J2)
η2λ∞

2α
.

When the mean reversion level of λt is constant and equal to θ, the moment generating
function of the log return,Xt is given by

E
(
eω1Xs | Ft

)
=

(
St
S0

)ω1

exp (A(t, s) +B(t, s)λt) , s ≥ t

where A(t, s) and B(t, s) are solutions of the system of ODE’s{
∂
∂tA = −ω1

(
µ− σ2

2

)
− ω2

1
σ2

2 − αθB
∂
∂tB = αB + ω1 (ψ (1, 0)− 1)− [ψ (ω1 , B η)− 1]

. (19)

with the terminal conditions A(s, s) = 0, B(s, s) = 0. Finally, the expression of the
realized variance is similar to (17), but in which the integral of the expected intensity is
given by:

ˆ T

0
E (λu | F0) du =

λ0 − λ∞
α− ηµJ

(
1− e−(α−ηµJ )T

)
+ λ∞T

.
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3 Estimating multifactor SEJD.

In this section, we apply our two SEJD models to financial data. We use only returns
data to estimate and test the models. Our main goal is to test in-sample whether and how
considering a self-exciting process for the long-run mean level of the jump arrival intensity
can help matching the dynamics of data. The other purpose of this analysis is to select
the most appropriate distributions for jumps sizes, among the positive, negative, double
exponential and binomial laws. Before presenting some empirical results, we must describe
our data and introduce the econometric strategy we develop to filter state variables and to
estimate the parameters. Notice that we only provide hereafter a sketch of our econometric
approach for estimating structural parameters and for filtering hidden intensities. These
approaches are fully described in the Appendix devoted to the econometric methodology.

3.1 Data Description

We collect S&P 500 daily data from Bloomberg over a sample period from September 2005
to October 2015. As a result, the time serie contains a total of 2543 continuously com-
pounded returns. Table 1 provides summary statistics for the continuously compounded
returns. Their yearly volatility reaches 20.64% and the very high kurtosis indicates that
the distribution of returns has fat-tails. Jarque Bera and Lillie tests of normality reject
this assumption whereas the Durbin Watson statistic reveals serial dependence.

Insert Table 1

Figure 1 plots prices and returns of the ’assets’ on the sample period. Clustering
of jumps in returns are clearly visible from September 2008 to end 2009 (the US credit
crunch period) and from September 2011 to February 2012 (the second period of the
double-dip recession). Shocks on returns during these periods do not display any clear
trend: negative movements alternate regularly with large positive technical bounces. This
observation corroborates a link between the frequency of jumps and their absolute values,
as assumed in our modelling.

Insert Figure 1

3.2 Structural parameter estimation

It is common knowledge that estimating parameters of a Jump-Diffusion process with
time series is challenging and requires some advanced econometric techniques. Our model
involves, in particular, two latent processes (λ = (λt)t and θ = (θt)t) that we need to back
out by using a filtering technique. An Euler discretization makes it possible to rewrite our
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model into a state space form12. The state-space formulation we obtain is nevertheless
highly non-Gaussian and nonlinear, so that we cannot use neither the popular Kalman
filter nor any variants in the present context. There is a considerable literature on how
to perform filtering of non-Gaussian and nonlinear state space models. In this paper we
employ a peak over threshold approach. This approach detailed in appendix is particu-
larly robust and simple to implement. It is also enough accurate to emphasize the main
advantages of the bifactor model compared to the single factor one.

After calibration of parameters, a sequential Monte Carlo procedure (also called parti-
cles filter), running with 5000 particles, is applied so as to approach the loglikelihood and
to filter with more accuracy the state variables. Notice that the loglikelihood function
yield by this algorithm is obtained by simulations and is then not smooth enough to cal-
ibrate directly the model by loglikelihood maximization. A way to avoid this drawback
consists to use a Particle Markov Chain Monte Carlo (PMCMC) method. But to limit
the computation time, this approach requires to determine accurately prior and transition
distributions of parameters, that we don’t know.

3.3 Empirical results

Table 2 reports estimated log-likelihoods, Akaike Information Criterions (AIC) for the uni-
and bi-factor models, with simple or double exponential and binomial jumps. Comparing
AIC statistics suggests that the bifactor model outperforms the single factor one to fit
the data, excepted whether jumps have positive exponential distributions. The same
conclusion arises by observing larger log-likelihoods for the multifactor model. But are
these likelihoods significantly larger? To answer this question, it is tempting to ’test’
whether this result is true. Notice however these are just average log-likelihoods so that
the test is only approximate. In the final row of Table 2, we routinely apply the likelihood
ratio test to assess whether the multifactor model really outperforms the single factor
model. The likelihood ratio statistic is commonly defined by LRT = −2 (lnL0 − lnLa)
where lnL0 is the log-likelihood of the single factor specification and lnLa is the log-
likelihood of the multifactor specification. This test statistic behaves asymptotically like a
random variable having a chi-squared distribution whose degree of freedom is d where d is
the difference of the number of parameters involved in the two specification. One therefore
has LRT → χ2

d where d = 2 This analysis leads to the same conclusion. The best fit
is obtained with DEJ jumps. This suggests that self-excitation is caused by positive and
negative jumps and not only by negative shocks as in Carr and Wu (2016). The asymptotic
frequency is around 22 jumps per year for models with double exponential jumps.

Insert Table 2

12This discretization can of course induce a bias. But this bias is expected to be quite small because we
apply our model to daily data.
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Table 3 reports parameters for the uni- and bi-factor specifications. Positive shocks
occur with a probability of 37% and their average amplitude is 3.28%. Negative jumps
are less frequent with a slightly larger average amplitude (-2.95%). By construction, the
parameter η tunes the feedback effect of jumps on λt. The η of bifactor models are all
below the one of their equivalent in the unifactor model. Speeds of mean reversion of λt
are higher in bifactor models then in single factor ones. Levels of mean reversion γ and
θ are quite similar. Table 4 presents the asymptotic expectation and standard deviations
of λt and θt, for the uni- and bi-factor models.

Insert Table 3

Insert Table 4

Figure 2 provides the QQ plots to assess the quality of the DEJ multifactor model to fit
the data. The left upper graph is a standard normality plot for assessing whether residuals
are Gaussian. The other graph questions whether the filtered jumps behave according to
a double exponential distribution.

Insert Figure 2

Insert Figure 3

The figure 3 compares the kernel functions of bi- and uni-variate models with double
constant and double exponential jumps. The graph in the second and third rows show
respectively the spread between double and single factor kernels and their ratio. The
kernel function at time zero informs on the instantaneous impact of a price jump on the
jump arrival intensity. And graphs reveal that this value is much higher for the bifactor
model (η = 381) than for the single factor one (η = 337). As time passes a bit, the
multifactor kernel function decreases faster than the single factor one. After 0.08 year,
the multifactor kernel function decreases slower than the single factor one, so that the
influence of a realized jump in the stock index or the individual index lasts longer in
the multifactor model. This is confirmed by ratios double on single factor kernels that
emphasizes the fatter left tails of double factor kernel.

Insert Figure 4
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The figure 4 shows the term structure of expected realized volatilities yield by the
bi-factor model. We observe that the closer is λ0 to the asymptotic level E(λ∞), the flater
is the curve. As we could expect, deviations of λ0 mainly modify the short term slope
of the curve. Deviations of θ0 from E(λ∞) have a bigger impact and affect on the long
run the term structure. For values of θ0 above (resp. below) E(θ∞), the curve is convex
decreasing (resp. concave increasing).

Insert Figure 5

Thanks to our econometric methodology, we can filter out values of λt and θt over time.
We present these time series in Figure 5. Because both λt and θt react to the same jumps,
their evolution over time seems a bit similar. They both experiment some peaks around
2008 the period where the US experiments a credit crunch and between September 2011
and February 2012 which is the second period of the double-dip recession. But, because
their relative sensitivity to the realized jumps is of different order as shown by the estimates
of η vs δ in Table 3, we can rationalize some differences. In particular, the θt is less affected
by jumps than λt.

4 Pricing with a SEDJ model

4.1 Changes of measure

Empirical evidences suggest that the bi-factor SEDJ is efficient for modelling of time
series. This section shows that it is also usable for valuation purposes. As prices depend
on two hidden state processes, a market made up of cash and of one stock is incomplete
by construction. Hence, several equivalent measures are eligible as a candidate for the
definition of a risk neutral one. In this paper, we focus on a family of changes of measure
that preserves the dynamics of the process. These are induced by exponential martingales
of the form:

Mt(ξ, ϕ) := exp

(
(κ1(ξ), κ2(ξ))

(
λt
θt

)
+ ξ Lt − κ3(ξ)t

)
(20)

× exp

(
−1

2

ˆ t

0
ϕ(s)2ds−

ˆ t

0
ϕ(s)dWs

)
where ϕ(s) is Fs adapted and ξ is constant. κ1(ξ), κ2(ξ) and κ3(ξ) are functions of ξ.
Zhang et al. (2009) use a similar change of measure to simulate rare events, of a one
dimension Hawkes process, without Brownian component and only with constant jumps.
In our framework, jumps are random and the affine change of measure modifies both
frequencies and distribution. The next proposition details the conditions under which Mt

is a martingale:
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Proposition 8: If for any parameter ξ, there exist suitable solutions κ1(.), κ2(.) and
κ3(.) for the system of equations

κ1α− κ2β = 0

κ2βγ − κ3 = 0

κ1α− (ψ (0, κ1η + κ2δ + ξ)− 1) = 0

(21)

then Mt(ξ) is a local martingale.

Assuming the existence of suitable solutions for the system (21), an equivalent measure
Qξ,ϕ is defined by:

dQξ,ϕ

dP

∣∣∣∣
Ft

=
Mt(ξ, ϕ)

M0(ξ, ϕ)
(22)

The next proposition develops the dynamics of λt and θt under Q.

Proposition 9: Let us denote by NQ
t , the counting process that is ruled by the fol-

lowing intensity
λQt = ψ(0, κ1η + κ2δ + ξ)λt

under Qξ,ϕ. We also define random variables JQ through the next moment generating
function:

ψQ(z1, z2) := EQ
(
ez1J

Q+z2|JQ|
)

=
ψ (z1, z2 + (κ1η + κ2δ + ξ))

ψ(0, κ1η + κ2δ + ξ)

and the process LQt =
∑NQ

t
j=1 |J

Q
j |. Then the dynamics of λt and θt under Qξ is the

following

dλt = α
(
θQt − λt

)
dt+ ηQdLQt (23)

dθt = β
(
γQ − θt

)
dt+ δQdLQt (24)

where

γQ = γψ(0, κ1η + κ2δ + ξ)

ηQ = ηψ(0, κ1η + κ2δ + ξ)

δQ = δψ(0, κ1η + κ2δ + ξ)

The next proposition shows that the jump distribution is preserved under the chosen

equivalent measure.

Proposition 10: Under Qξ,ϕ, jumps, JQi are double-exponential random variables
with density

νQ(z) = pQρ+Qe−ρ
+Qz1{z≥0} − (1− pQ)ρ−Qe−ρ

−Qz1{z<0},
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where the parameters are adjusted as follows:

ρ+Q = ρ+ − (κ1η + κ2δ + ξ) ,

ρ−Q = ρ− + (κ1η + κ2δ + ξ) ,

pQ =
pρ+ρ−Q

(pρ+ρ−Q + (1− p)ρ−ρ+Q)
.

As we have now identified a class of equivalent measures, we can define at least one
risk neutral measure under which the expected return on St is equal to the risk free rate.
As the dynamics of Xt under Q is driven by the following SDE

dXt =

(
µ− σ2

2
− λtE

(
eJ − 1

)
− ϕ(t)σ

)
dt+ σdWQ

t + JQdNQ
t

=

(
µ− σ2

2
− λQt

E
(
eJ − 1

)
ψ(0, κ1η + κ2δ + ξ)

− ϕ(t)σ

)
dt+ σdWQ

t + JQdNQ
t

and as dSt = d(eXt) , then we infer that

dSt = (µ− ϕ(t)σ)Stdt+ σ St dW
Q
t

+ St

[(
eJ

Q
t − 1

)
dNQ

t − λ
Q
t

E
(
eJ − 1

)
ψ(0, κ1η + κ2δ + ξ)

dt

]
and

EQ
(
dSt
St
| Ft
)

= µ− ϕ(t)σ + λQt

[
EQ
(
eJ

Q − 1
)
−

E
(
eJ − 1

)
ψ(0, κ1η + κ2δ + ξ)

]
dt

This drift is equal to the risk free rate if and only if

ϕ(t) =

µ+ λQt

[
EQ
(
eJ

Q − 1
)
− E(eJ−1)

ψ(0,κ1η+κ2δ+ξ)

]
− r

σ

and we can summarize our result in the next corollary.

Corollary 2: If the risk free rate, noted r , is constant, then the Ft adapted process
ϕ(t) is

ϕ(t) =

µ+ λQt

[
EQ
(
eJ

Q − 1
)
− E(eJ−1)

ψ(0,κ1η+κ2δ+ξ)

]
− r

σ
to ensure the absence of arbitrage. And St is the following exponential under Q:

dSt = rStdt+ σ St dW
Q
t (25)

+St

[(
eJ

Q
t − 1

)
dNQ

t − EQ
((
eJ

Q − 1
)
| Ft
)
λQt dt

]
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4.2 Option pricing

Under the risk neutral measure, the stock price is led by the geometric jump diffusion
process presented in equation (25). According to the Itô’s lemma, the log return Xt =
log St

S0
under Q is then equal to

Xt =

ˆ t

0
r − 1

2
σ2ds− EQ

((
eJ

Q − 1
)
| Ft
)
λQs ds+

ˆ t

0
σ dWQ

t +

Nt∑
i=1

JQi .

The remainder of this section focuses on European options written on the stock log-return.
If T is the expiry date, the option payoff is denoted by V (T,XT ). For call and put options
with a strike price K, the payoffs are respectively defined by V (T,XT ) = [S0e

XT −K]+
and V (T,XT ) = [K − S0e

XT ]+. The option price is equal to the expected discounted
cash-flow. This is also the product of a discount factor and of the integral of the payoff,
weighted by the density of XT |Ft. If this density is denoted by fXT |Ft(x), the option value
is given by:

EQ
(
e−r(T−t)V (T,XT ) | Ft

)
= e−r(T−t)

ˆ +∞

−∞
V (T, x) fXT |Ft(x)dx. (26)

The density function does not admit any closed form expression but can be approached
numerically by inverting the mgf of the log return, that is provided in proposition 5, by
the next discrete Fourier transform (DFT):

Proposition 12: Let M be the number of steps used in the DFT and let ∆x = 2xmax
M−1

be the discretization step. We denote ∆z = 2π
M ∆x

and

zj = (j − 1)∆z

for j = 1 . . .M . The values of fXt(.) at points xk = −M
2 ∆x + (k − 1)∆x are approached

by the sum

fXT |Ft(xk) ≈
2

M ∆x
Re

 M∑
j=1

Ijϕ
(
i zj , Xt, λ

Q
t , θ

Q
t

)
(−1)j−1e−i

2π
M

(j−1)(k−1)

 , (27)

where Ij = 1
21{j=1}+ 1{j 6=1} and ϕ

(
i zj , Xt, λ

Q
t , θ

Q
t

)
is the mgf of XT conditionally to Ft.

For a proof, the reader may refer to Hainaut (2016). Once that the density is ap-
proached numerically, the option is evaluated by discretizing the integral in equation (26)

EQ
(
e−r(T−t)V (T,XT ) | Ft

)
≈ e−r(T−t)

M∑
k=1

V (T, xk) fXT |Ft(xk) ∆x

This method is slightly different from the one proposed by Carr and Madan (1999) who
calculate directly the option value by DFT, and for a serie of strike prices.
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4.3 Numerical illustration

The first graph of figure 6 shows the surface of implied volatilities for European call
options on the S&P 500. The maturities range from 2 weeks to 3 months and strike prices
run from 90% to 110% of the spot S&P value. The parameters used for this calculation
are these obtained by the econometric calibration. The intensity and its mean reversion
level are set to their asymptotic averages, λ0 = E(λ∞) and θ0= E(θ∞). For short term
maturities, we observe a pronounced smile of volatilities, slightly asymmetric. For longer
maturities, the smile is flatter and around 25%. The sensitivity of the volatility surface to
parameters is studied in the next three subplots of figure 6. Increasing the γ shifts up the
volatility surface by a few percents. Reducing the speeds of mean reversion or increasing
the feedback parameters η and δ both raises implied volatilities. The smile is clearly more
sensitive to modifications of the dynamics of λt then to these related to θt. The two last
graphs of figure 6, illustrate the influence of the initial values λ0 and θ0 on the short and
medium term smiles. Shifting up λ0 raises the instantaneous probability of observing a
train of new jumps, and then increases implied volatilities for all maturities. On the other
hand, increasing of θ0 mainly affects medium term implied volatilties and has nearly no
impact on the 1 month smile. Notice that the asymmetry of the smile is mainly controlled
by the parameters defining the double exponential jumps.

Insert Figure 6

5 Conclusion

This paper introduces a new category of multifactor self-excited jump diffusion processes
in which the occurrence of a jump increases the frequency of future jumps and the level
to which it reverts. This model is reformulated as a single factor self-excited jump process
with a kernel function that is a mixture of exponential functions. In this framework,
we establish closed and semi-closed form expressions for the mean and variance of the
intensity, for the moment generating of log returns and for the expected realized variance.
We also introduce a class of changes of measure preserving the dynamics of the process
under the risk neutral measure. We investigate empirical issues related to the filtering by
sequential Monte Carlo of state variables and the econometric calibration by a peak over
threhold method. Finally, we show that our process is usable for option pricing and yields
realistic smile of volatilities.

The model is fitted to the time serie of S&P 500 daily returns and empirical results
corroborate the existence of a relation between the mean reversion level of the jump
intensity, and jumps. In particular, the kernel function displays a higher resilience to
shocks at long term than the one of the single factor model. This analysis also reveals
that self-excitation is induced by positive and negative jumps. From an economic point of
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view, this means that when the stock market is shacked by a movement of large amplitude,
investors should both anticipate an increase of the risk of immediate jump occurrences but
also adjust their long term expectation about the frequency of jumps.
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6 Appendix

6.1 Exponential and double exponential jumps

The double exponential distribution has certainly been popularized in Finance by the
work of Kou (2002). Hereafter we recall a number of well known results. Notice that
our notations are slightly different from those used by Kou (2002). A double exponential
distributed random variable J may take positive or negative values. Its probability density
function (defined on R) is given by

ν (z) = pρ+e−ρ
+z1{z≥0} − (1− p) ρ−e−ρ−z1{z<0}

while the associated cumulative distribution function is

P [J ≤ z] = (1− p) e−ρ−z1{z≤0} +
[
(1− p) + p

(
1− e−ρ+z

)]
1{z>0}.

Consequently, this distribution depends on three parameters ρ+ ∈ R+, ρ− ∈ R− and
p ∈ (0, 1) where p (resp. (1 − p)) stands for the probabilities of observing an upward
(resp. downward) exponential jump and 1

ρ+ (resp. 1
ρ− ) gives the average positive (resp.

negative) size jump. When only unidirectional jumps are considered, all developments
remains valid with respectively p = 1 or p = 0 for positive and negative exponential
jumps. The expected value of the size of jump (J) is the weighted sum of these average
sizes i.e. E(J) = p 1

ρ+ + (1− p) 1
ρ− . The expected value of the absolute value of the size of

jump (|J |) is E (|J |) = p 1
ρ+ + (1− p) 1

|ρ−| ≡ µJ . An important expression for our research

is the second moment of these two random variables

E
(
J2
)

= E
(
|J |2

)
= p

2

(ρ+)2 + (1− p) 2

(ρ−)2 .

Finally, one has

ψ (z1, z2) := E
(
ez1J+z2|J |

)
= p

ρ+

ρ+ − (z1 + z2)
+ (1− p) ρ−

ρ− − (z1 − z2)
(28)

if (z1 + z2) < ρ+ and (z1 − z2) > ρ− (see Hainaut (2016)) so that E
(
eJ
)

= ψ (1, 0) =

p ρ+

ρ+−1
+ (1− p) ρ−

ρ−−1
. On the other hand, we have the following useful expressions for the

calculation of the expected realized variance and volatility.

E
((
eJ − 1

)2)
= p

(
ρ+

ρ+ − 2
− ρ+ + 1

ρ+ − 1

)
(29)

+ (1− p)
(

ρ−

ρ− − 2
− ρ− + 1

ρ− − 1

)
and

E
((
eJ − 1

)4)
= p

(
ρ+

ρ+ − 4
− 4

ρ+

ρ+ − 3
+ 6

ρ+

ρ+ − 2
− 3ρ+ + 1

ρ+ − 1

)
+ (1− p)

(
ρ−

ρ− − 4
− 4

ρ−

ρ− − 3
+ 6

ρ−

ρ− − 2
− 3ρ− + 1

ρ− − 1

)
.
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6.2 Binomial jumps

When J has a binomial distribution, its probability density function (defined on R) is
given by

ν (z) = p
1

ρ+
δ{z=ρ+} + (1− p) 1

ρ−
δ{z=ρ−}

the distribution depends on three parameters ρ+ ∈ R+, ρ− ∈ R− and p ∈ (0, 1) where
p (resp. (1 − p)) stands for the probabilities of observing an upward (resp. downward)
constant jump of size 1

ρ+ (resp. 1
ρ− ) . The expected value of the size of jump (J) is the

weighted sum of these average sizes i.e. E(J) = p 1
ρ+ + (1 − p) 1

ρ− . The expected value of

the absolute value of the size of jump (|J |) is E (|J |) = p 1
ρ+ + (1− p) 1

|ρ−| ≡ µJ and

E
(
J2
)

= E
(
|J |2

)
= p

1

(ρ+)2 + (1− p) 1

(ρ−)2 .

The mgf of jumps and of their absolute value is given by

ψ (z1, z2) := E
(
ez1J+z2|J |

)
= pe

(z1+z2) 1
ρ+ + (1− p) e(z1−z2) 1

ρ− (30)

whereas we have the follwing useful expressions for the calculation of the expected realized
variance and volatility:

E
((
eJ − 1

)2)
= p

((
e

1
ρ+ − 1

)2
)

+ (1− p)
((

e
1
ρ− − 1

)2
)
,

E
((
eJ − 1

)4)
= p

((
e

1
ρ+ − 1

)4
)

+ (1− p)
((

e
1
ρ− − 1

)4
)
.
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6.3 Proofs

Proof of proposition 1: Integrating equation (3) leads to the following expression for
λt

λt =

ˆ t

0
αe−α(t−s)θsds+ e−αtλ0 + η

ˆ t

0
e−α(t−s)dLs.

Now insert the expression (5) of θs in this relation. One obtains

λt =

ˆ t

0
αe−α(t−s)

(
γ + e−βs (θ0 − γ) + δ

ˆ s

0
e−β(s−u)dLu

)
ds+e−αtλ0 +η

ˆ t

0
e−α(t−s)dLs

or

λt = γ

ˆ t

0
αe−α(t−s)ds+ (θ0 − γ)

ˆ t

0
αe−α(t−s)e−βsds+

ˆ t

0
αδe−α(t−s)

ˆ s

0
e−β(s−u)dLuds

+e−αtλ0 + η

ˆ t

0
e−α(t−s)dLs .

Then, assuming α 6= β, changing the order of integration and integrating give

λt = γ
(
1− e−αt

)
+ (θ0 − γ)

α

(α− β)

(
e−βt − e−αt

)
+e−αtλ0 +

ˆ t

0

αδ

α− β

(
eβ(u−t) − eα(u−t)

)
+ ηe−α(t−u) dLu

as expected.

If now α = β, then

λt =

ˆ t

0
αe−α(t−s)

(
γ + e−αs (θ0 − γ) + δ

ˆ s

0
e−α(s−u)dLu

)
ds+ e−αtλ0 + η

ˆ t

0
e−α(t−s)dLs,

= γ + (λ0 − γ) e−αt + η

ˆ t

0
e−α(t−s)dLs + αt (θ0 − γ) e−αt + δα

ˆ t

0
e−α(t−u) (t− u) dLu.

�

Proof of proposition 2: As E (dLs|F0) = E (|J | |F0) × E (λs−|F0) , we have from
the equation (5) that

E (θt|F0) = γ + e−βt (θ0 − γ) + δµJ

ˆ t

0
e−β(t−s)E (λs−|F0) ds.

If we derive this last expression with respect to time, we find that E (θt|F0) is solution of
an ODE:

∂

∂t
E (θt|F0) = −βe−βt (θ0 − γ) + δµJE (λt|F0)− βδµJ

ˆ t

0
e−β(t−s)E (λs−|F0) ds

= δµJE (λt|F0)− β E (θt|F0) + γβ . (31)
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On another hand, the expectation of λt is also given by the relation

E (λt|F0) = α

ˆ t

0
e−α(t−s)E (θs|F0) ds+ e−αtλ0 + ηµJ

ˆ t

0
e−α(t−s)E (λs−|F0) ds.

And if we derive this last expression with respect to time, we obtain the following ODE
for E (λt|F0) :

∂

∂t
E (λt|F0) = αE (θt|F0)− α

ˆ t

0
αe−α(t−s)E (θs|F0) ds− αe−αtλ0 +

ηµJE (λt|F0)− αηµJ
ˆ t

0
e−α(t−s)E (λs−|F0) ds

= αE (θt|F0) + (ηµJ − α)E (λt|F0) .

In matrix form, E (θt|F0) and E (λt|F0) are solutions of a system of ODE:(
∂
∂tE (θt|F0)
∂
∂tE (λt|F0)

)
=

(
−β δµJ
α (ηµJ − α)

)
︸ ︷︷ ︸

M

(
E (θt|F0)
E (λt|F0)

)
+

(
γβ
0

)
(32)

Finding a solution requires to determine eigenvalues γ and eigenvectors (v1, v2) of the ma-
trix M , multiplying the expectations. These eigenvalues cancel the following determinant
of

det

(
−β − γ δµJ
α (ηµJ − α)− γ

)
= 0

and are roots of a second order polynomial

0 = (−β − γ) ((ηµJ − α)− γ)− αδµJ
= −αδµJ − β(ηµJ − α) + γ [β − (ηµJ − α)] + γ2

0 = −αδµJ − β(ηµJ − α) + (β − (ηµJ − α)) γ + γ2 .

If the discriminant, ∆, is positive

∆ = (β − (ηµJ − α))2 + 4 (δµJα+ β(ηµJ − α)) > 0

then the roots γ1 and γ2 are given by:

γ1 = −1

2
(β − (ηµJ − α)) +

1

2

√
∆ ,

γ2 = −1

2
(β − (ηµJ − α))− 1

2

√
∆ .

The product of the roots is the constant of the second order polynomial

γ1γ2 = −αδµJ − β(ηµJ − α) (33)
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and, by passing, one has

(β + γ2) (β + γ1)

=
1

4

(
[2β + ((ηµJ − α)− β)]2 −

[
(β − (ηµJ − α))2 + 4 (δµJα+ β(ηµJ − α))

])
=

1

4

4β2 + 4β
(

(ηµJ − α)− β
)

+ ((ηµJ − α)− β)2 − (β − (ηµJ − α))2︸ ︷︷ ︸
=0


−δµJα− β(ηµJ − α)

= −δµJα. (34)

Eigenvectors of the matrix M are orthogonal and such that(
−β δµJ
α (ηµJ − α)

)(
v1

v2

)
= 0.

Then we infer that (
vi1
vi2

)
=

(
−δµJ
−β − γi

)
: i = 1, 2

Finally, if D = diag(γ1, γ2) and V is the matrix of eigenvectors, the matrix M in equation
(32) admits the following decomposition(

−β δµJ
α (ηµJ − α)

)
= V DV −1.

If we define (
u1

u2

)
= V −1

(
E (θt|F0)
E (λt|F0)

)
the system (32) can be rewritten as two independent ODE’s(

∂
∂tu1
∂
∂tu2

)
=

(
γ1 0
0 γ2

)(
u1

u2

)
+ V −1

(
γβ
0

)
.

If we introduce the following notation,

V −1

(
γβ
0

)
=

(
ε1
ε2

)
the solutions of ODE’s are given by

u1(t) =
ε1
γ1

(
eγ1t − 1

)
+ d1e

γ1t

u2(t) =
ε2
γ2

(
eγ2t − 1

)
+ d2e

γ2t
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where d = (d1, d2)′ is such that d = V −1

(
θ0

λ0

)
. Then

(
u1

u2

)
=

(
1
γ1

(
eγ1t − 1

)
0

0 1
γ2

(
eγ2t − 1

) )V −1

(
γβ
0

)
+

(
eγ1t 0
0 eγ2t

)
V −1

(
θ0

λ0

)
and we can conclude. �

Proof of proposition 3: We define the martingale Mt := λt − E(λt|F0), then
[λ, λ]t = [M,M ]t and [M,M ]t = M2

t − 2
´ t

0 Ms−dMs. Then V (λt|F0) = E ([M,M ]t|F0) =
E ([λ, λ]t|F0). The expected quadratic variation of λ, is given by

[λ, λ]t =

[ˆ t

0

αδ

α− β

(
eβ(u−t) − eα(u−t)

)
+ ηe−α(t−u) dLu ,

ˆ t

0

αδ

α− β

(
eβ(u−t) − eα(u−t)

)
+ ηe−α(t−u) dLu

]
t

=

ˆ t

0

(
αδ

α− β

(
eβ(u−t) − eα(u−t)

)
+ ηe−α(t−u)

)2

|Ju|2dNu (35)

From this last equation and as E
(
|J |2

)
= p 2

(ρ+)2 + (1− p) 2
(ρ−)2 , we infer that:

V (λt|F0) = E(|J |2)

ˆ t

0

(
αδ

α− β
eβ(u−t) +

(
η − αδ

α− β

)
eα(u−t)

)2

E (λu|F0) du

If we inject the expression (12) for E (λu|F0) into this last equation, we conclude. �.

Proof of Proposition 4: To lighten notations, we temporarily denote
f = E

(
eω0Λs+ω1λs+ω2θs | Ft

)
, with t ≤ s. It is solution of the following Itô’s equation:

0 = ft + fΛλt + α(θt − λt) fλ + β (γ − θt) fθ (36)

+λt

ˆ +∞

0
f (t, λt + η |z|, θt + δ |z|)− f(.) dν(z) .

In the remainder of this proof, f is assumed to be an exponential affine function of λt, θt
and Λt :

f = exp (A(t, s) +B(t, s)λt + C(t, s)θt +D(t, s)Λt) ,

where A(t, s), B(t, s), C(t, s) and D(t, s) are functions of time with the terminal conditions
A(s, s) = 0, B(s, s) = ω1 , C(s, s) = ω2 and D(s, s) = ω0. Under this assumption, the
partial derivatives of f are given by:

ft =

(
∂

∂t
A(t, s) +

∂

∂t
B(t, s)λt +

∂

∂t
C(t, s)θt +

∂

∂t
D(t, s)Λt

)
f,

fΛ = D(t, s)f fλ = B(t, s)f : fθ = C(t, s)f
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And the integrand in equation (36) is becomes:

ˆ +∞

0
f (t, λt + η |z|, θt + δ |z|)− f(.) dν(z) = f [ψ (0, B(t, s)η + C(t, s)δ)− 1] .

Injecting these expressions into the equation (36), leads to the following relation:

0 =

(
∂

∂t
A(t, s) + βγC(t, s)

)
+
∂

∂t
D(t, s)Λt + θt

(
∂

∂t
C(t, s) + αB(t, s)− βC(t, s)

)
+λt

(
∂

∂t
B(t, s) +D(t, s)− αB(t, s) + [ψ (0, B(t, s)η + C(t, s)δ)− 1]

)
This relation implies that D(t, s) = ω0 and that A(t, s), B(t, s), C(t, s) satisfy the system
of ODEs: 

∂
∂tA = −βγC
∂
∂tB = αB − [ψ (0, Bη + Cδ) + ω0 − 1]
∂
∂tC = −αB + βC

. (37)

�

Proof of Proposition 5: As usual, let us denote f = E
(
eω1Xs | Ft

)
, with t ≤ s. It is

solution of the following Itô’s equation for semi martingale:

0 = ft + fX

(
µ− σ2

2
− λtE

(
eJ − 1

))
+ fXX

σ2

2
+ α(θt − λt) fλ + β (γ − θt) fθ(38)

+λt

ˆ +∞

0
f (t,Xt + z, λt + η |z|, θt + δ |z|)− f(.) dν(z) .

If f is assumed to be an exponential affine function of λt, θt, and Xt :

f = exp (A(t, s) +B(t, s)λt + C(t, s)θt +D(t, s)Xt) ,

where A(t, s), B(t, s), C(t, s), D(t, s) are time dependent functions. The result is proven
in a similar way to proposition 4. �

Proof of Proposition 8: Let us denote by Yt the exponent of Mt:

Yt = (κ1(ξ), κ2(ξ))

(
λt
θt

)
+ ξ Lt − κ3(ξ)t (39)

−1

2

ˆ t

0
ϕ(s)2ds−

ˆ t

0
ϕ(s)dWs

Its infinitesimal dynamics is given by

dYt = κ1α (θt − λt) dt+ κ2β (γ − θt) dt

+ (κ1η + κ2δ + ξ) |J |dNt − κ3dt−
1

2
ϕ(t)2dt− ϕ(t)dWt
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In the remainder of this proof, the random measure of J is noted Ξ(.) and is such that
J =

´∞
0 Ξ(dz). Applying the Ito’s lemma for semi-martingales to Mt leads to the next

relation:

dMt = MtdYt +
1

2
Mtd [Yt, Yt]

c
t

+Mt

ˆ ∞
0

(
e(κ1η+κ2δ+ξ)|z| − 1− (κ1η + κ2δ + ξ) |z|

)
Ξ(dz)dNt

that is developed as follows:

dMt = Mt ((κ1α− κ2β) θt + κ2βγ − κ3) dt− 1

2
ϕ(t)2Mtdt+

1

2
Mtϕ(t)2dt

−ϕ(t)MtdWt −Mtλt

(
κ1α−

ˆ ∞
0

(
e(κ1η+κ2δ+ξ)|z| − 1

)
ν(dz)

)
dt

+Mt

ˆ ∞
0

(
e(κ1η+κ2δ+ξ)|z| − 1

)
(Ξ(dz)dNt − λtν(dz)dt)

Since the integrals with respect to Ξ(dz)dNt − λtν(dz)dt are local martingales, Mt is also
a local martingale if and only if the following relations hold:

κ1α− κ2β = 0

κ2βγ − κ3 = 0

κ1α−
´∞

0

(
e(κ1η+κ2δ+ξ)|z| − 1

)
ν(dz) = 0

�

Proof of proposition 9: If Yt is the exponent of Mt, as defined by equation (39)
and if we note ψb = ψ(0, κ1η + κ2δ + ξ), the expectation under Q of the mgf of λQT and

θQT is equal to

EQ
(
eω1λ

Q
T +ω2θ

Q
T |Ft

)
= E

(
eYT−Yt+ω1ψbλT+ω2ψbθT |Ft

)
= e−YtE

(
eYT+ω1ψbλT+ω2ψbθT |Ft

)
.

If f(.) denotes E
(
eYT+ω1ψbλT+ω2ψbθT |Ft

)
, according to the Itô’s lemma, it solves the

differential equation:

0 = ft + (κ1α (θt − λt) + κ2β (γ − θt)− κ3) fY + (40)

α (θt − λt) fλ + β (γ − θt) fθ −
1

2
ϕ(t)2 fY dt+

1

2
ϕ(t)2fY Y +

λt

ˆ +∞

−∞
f (t, λt + η|z| , θt + δ|z| , Yt + (κ1η + κ2δ + ξ) |z|)− f dν(z) .
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As usual, we assume that f(.) is an exponential affine function of state variables:

f = exp (A(t, T ) + ψ(0, κ1η + κ2δ + ξ) (B(t, T )λt + C(t, T )θt) +D(t, T )Yt) ,

and then

ft =

(
∂

∂t
A+ ψbλt

∂

∂t
B + ψb

∂

∂t
C θt +

∂

∂t
D Yt

)
f

fY = Df fY Y = D2 f fλ = Bψb f fθ = Cψb f

Inserting these expressions into the equation (40), leads to the following relation (after
grouping terms):

0 =
∂

∂t
A+ κ2βγD − κ3D + βγψbC − 1

2
ϕ(t)2Df +

1

2
ϕ(t)2D2f

+λt

(
ψb

∂

∂t
B − κ1αD − αψbB +

ˆ +∞

0

[
eBψ

bη|z|+Cψbδ|z|+D(κ1η+κ2δ+ξ)|z| − 1
]
dν(z)

)
+θt

(
ψb

∂

∂t
C + κ1αD − κ2βD + αψbB − βψbC

)
+ Yt

(
∂

∂t
D

)
we infer that D(t, s) = 1 as ∂

∂tD(t, s) = 0. And we get that

0 =
∂

∂t
A+ κ2βγ − κ3 + βγψbC

0 = ψb
∂

∂t
B − κ1α− αψbB +

ˆ +∞

0

[
eBψ

bη|z|+Cψbδ|z|+(κ1η+κ2δ+ξ)|z| − 1
]
dν(z)

0 = ψb
∂

∂t
C + κ1α− κ2β + αψbB − βψbC : .

Using conditions (21), this system is simplified as follows:

0 =
∂

∂t
A+ βγψbC

0 =
∂

∂t
B − αB +

[
ψ
(
0, Bψbη + Cψbδ + (κ1η + κ2δ + ξ)

)
ψb

− 1

]

0 =
∂

∂t
C + αB − βC

and we can conclude by comparison with the results of proposition 2. �

Proof of proposition 10: By construction, the moment-generating function for
jumps under the risk-neutral measure is the ratio

ψQ (z, 0) =
ψ (z, (κ1η + κ2δ + ξ))

ψ (0, κ1η + κ2δ + ξ)
.
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If we denote α = (κ1η + κ2δ + ξ), the numerator and denominator in this equation are
given by

ψ (z, α) =
pρ+ (ρ− + α− z) + (1− p)ρ− (ρ+ − α− z)

(ρ+ − α− z) (ρ− + α− z)

ψ (0, α) =
pρ+ (ρ− + α) + (1− p)ρ− (ρ+ − α)

(ρ+ − α) (ρ− + α)
.

Then, since

ψQ (z, 0) =

pρ+ρ−Q

(pρ+ρ−Q+(1−p)ρ−ρ+Q)

(
ρ−Q − z

)
ρ+Q + (1−p)ρ−ρ+Q

(pρ+ρ−Q+(1−p)ρ−ρ+Q)
ρ−Q

(
ρ+Q − z

)
(ρ+Q − z) (ρ−Q − z)

,

the proof is complete. �
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6.4 Econometric methodology

Among the most popular approach for calibration in the financial literature, we find the
method of simulated moments (Duffie and Singleton (1993)), indirect inference methods
(Gourieroux, Monfort, and Renault (1993)) and the efficient method of moments (EMM)
(Gallant and Tauchen (1996)). We opt instead for an asymmetric “peaks over threshold”
(POT) procedure similar to the one of Embrechts et al. (2011). This method is robust
and less time consuming than methods based on simulations or Bayesian Learning as used
by Fulop et al. (2015). Even if the biais of estimation is more important with the POT
procedure, this is sufficient for our purpose which is to demonstrate the validity of the
bifactor model.

The discrete record of T observations of log returns, equally spaced with a lag ∆ of
one day of trading is noted {x1,x1, x2, ..., xT }. Whether this return is above or below
some thresholds, it is likely that a jump occurred. These thresholds, denoted g(α1) and
g(α2) depend on the lag between observations and of confidence levels, α1 α2. To define
them, we fit by log likelihood maximization, a pure Gaussian process : xi ∼ µ∆ + σW∆.
And if Φ(.) denotes the pdf of a standard normal, g(α1), g(α2) are set to the α1 and α2

percentiles of the Brownian term: g(αi) = σ
√

∆Φ−1(αi). When a jump is detected, the
dynamics of the stocks index is approached by:{

(xi − µ∆) ∼ Ji (xi − µ∆) > g(α1) or (xi − µ∆) < g(α2)

Levels of confidence, α1 and α2 are optimized such that the skewness and the kurtosis of
xi for periods without jump are close to these of a normal distribution. For the S&P, we
find that α1 and α2 are respectively equal to 94% and 91%. The skewness and kurtosis of
returns for days without detected jumps are equal to 0.047 and 3.28. The volatilities of
the sample from which we withdraw positive, negative and both type of jumps are 18%,
16% and 12%. Once that jumps are detected, the sample paths of θt and λt for a given
set of parameters are approached by:

∆θi = β(γ − θi−1)∆ + δ Ji Ijump at ti

∆λi = α(θi − λi−1)∆ + η Ji Ijump at ti

Then, jumps and intensities are calibrated next by maximizing two log likelihoods: one
for the distribution of jumps and one for the dynamics of λt. E.g. for the DSEJD,{

(ρ−, ρ+, p) = arg max
∑n

i=1 log ν (xi | ρ−, ρ+, p) Ijump at ti
(α, η, β, δ, γ, λ0) = arg max

∑n
i=1 logP (∆iN |λih) Ijump at ti

The log-likelihood of the whole model is next estimated with the particle filter, introduced
in the next section. An inherent problem of particle filters is that the estimate of the
likelihood is not continuous as a function of parameters. From a practical viewpoint,
maximising the resulting rough surface to calibrate the process is then too computationally
expensive and uncertain. This is motivate the choice of the peak over threshold method,
which is a more robust alternative.
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6.4.1 Filtering state variables

Our estimation approach relies on a time-discretization of our SEDJ model characterized
by equations (1), (3) and (5). Denote by ∆ the length of the time interval. The ex
ante continuously compounded return (over the period ∆) at time t = j∆ defined by
Xj = lnS(j+1)∆ − lnSj∆ then satisfies the following equation in discrete time

Xj =

(
µ− σ2

2
− λjE

(
eJ − 1

))
︸ ︷︷ ︸

µj

∆ + σ
√

∆εj + ∆L
′
j (41)

where εj stands for a standard normal random variable and ∆L
′
j =

∑N(j+1)∆

k=Nj∆
Jk. Here

N(j+1)∆ − Nj∆ is distributed as a Poisson random variable with parameter λj−1∆. The
Euler approximation of equations (3) and (5) then provide the discretized dynamics of the
latent variables λ = (λt)t and θ = (θt)t given by

λj = λj−1+ α(θj−1 − λj−1)∆ + η∆Lj (42)

θj = θj−1+ β (γ − θj−1) ∆ + δ∆Lj (43)

where ∆Lj =
∑Nj

k=Nj−1
|Jk|. It is worth noticing that, in our applications, ∆ is one day

the duration between two consecutive observations and that, in such a ∆−long period,
there is a very small probability that more than one jump occurs (this probability is equal

to
(λj−1∆)2

2 e−λj−1∆). For very short ∆, one may consider ∆L
′
j = Jξj and ∆Lj = |J | ξj ,

where ξj = 1{N(j+1)∆−Nj∆=1}is a Bernoulli random variable with probability λj−1∆.

Notice that, at this stage, the model parameters are assumed to be known. Denote
vj = (λj , θj , Nj ,∆Lj ,∆L

′
j) the ’particle’ that puts together all necessary information

about the jump process at time t = j∆.
The above system of equations admits a useful state-space representation, where the

equation (41) provides a measurement equation or system (the ’space’) that defines the
relationship between the (possibly observed) return and the underlying state variables.
The vector vj = (λj , θj , Nj ,∆Lj ,∆L

′
j) can help finding the transition system (the ’state’)

that describes the dynamics of the state variables. This dynamics depends intimately on
the equations (42) and (43).

Denote the sample of observed continuously compounded returns by {x1, x2, ..., xn}
and Gj the set of information associated to the subset {x1, x2, ..., xj}, then G = (Gj)j
forms a filtration.

Conditional to information contained in vj , the return density p(xj |vj) is Gaussian

p(xj |vj) = N
(
µj∆−∆L

′
j , σ
√

∆
)

. On another side, it is possible to simulate the transi-

tion density p(vj+1 | vj) with equations (42) and (43). The density of v0 is p(v0) and the

posterior distribution of vj is denoted by p(vj | y1:j). As P (A|B) = P (A∪B)
P (B) , this posterior

distribution can be rewritten as follows

p(vj |x1:j) =
p(x1:j , vj )

p(x1:j)
, (44)
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and according to the Bayes’ rule, the denominator satisfies the equality:

p(x1:j) = p(x1:j−1, xj) = p(xj |x1:j−1)p(x1:j−1)

On another hand, the numerator of equation (44) is developped as follows

p(x1:j , vj ) = p(xj | vj)p(vj |x1:j−1)p(x1:j−1).

Finally, we obtain the expression for the posterior distribution is:

p(vj |x1:j) =
p(xj | vj)´

p(xj |vj)p(vj |x1:j−1)dvj
p(vj |x1:j−1) (45)

where

p(vj |x1:j−1) =

ˆ
p(vj | vj−1)p(vj−1 |x1:j−1)dvj−1 (46)

To summarize, the calculation of p(λj , θj |x1:j) is done in two steps, close to these used in
the Kalman Filter. The first one is a prediction step in which we estimate p(vj |x1:j−1) by
the relation (46). In the correction step, we next calculate the probabilities p(vj |x1:j) using
the equation (45). In practice, the integral in the prediction step is replaced by a Monte

Carlo simulation, of N particles, noted v
(i)
j = (λ

(i)
j , θ

(i)
j ,∆L

(i)
j ,∆L

′(i)
j ) for i = 1, . . . , N .

And the structure of the particle filter algorithm is the following:

1. Initial step: draw N values of v
(i)
0 for i = 1, . . . , N , from an initial distribution

p(v0)

2. For j = 1 : T

Prediction step: draw a sample ∆L
(i)
j and ∆L

′(i)
j and update λ

(i)
j , θ

(i)
j using the

relations

λ
(i)
j = λ

(i)
j−1 + α(θ

(i)
j−1 − λ

(i)
j−1)∆ + η∆L

(i)
j

θ
(i)
j = θ

(i)
j−1 + β

(
γ − θ(i)

j−1

)
dt+ δ∆L

(i)
j

Correction step: the particle v
(i)
j has a probability of occurrence equal to w

(i)
j =

p(xj | vj)∑
i=1:N p(xj | vj) where p(xj | vj) ∼ N

(
µ

(i)
j ∆−∆L

′(i)
j , σ

√
∆
)

.

Resampling step: resample with replacement N particles according to the impor-

tance weights w
(i)
j . The new importance weights are set to w

(i)
j = 1

N .

Notice that there exists smoothing procedures as the Forward-Backward Smoother (FBS)
or Maximum A Posteriori Smoother (MAP). However these procedures are time consuming
and as showed by Ncube (2009) in his PhD thesis, the gain of accuracy is sometimes
limited.
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7 Figures

Figure 1: Prices and returns of the S&P 500
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This figure presents the S&P 500 daily quotes and log returns from the 7/9/2005 to the

13/10/2015.
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Figure 2: QQ plots
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First and second graphs: QQ plots of filtered Gaussian residuals and double exponential jumps.

Notice that filtered jumps smaller than 0.4% have been excluded from the sample to draw the

QQ plot because they form a white noise generated by the particles filter.
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Figure 3: Kernel functions
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Right and left graphs compare kernel functions of uni- and bi- factors model, respectively for

double constant and double exponential jumps. The first, second and third rows show

respectively kernel functions, their differences and their ratio.
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Figure 4: Expected realized volatilities
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Curves of expected realized volatilities for different values of λ0 and θ0.
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Figure 5: Filtered processes
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Figure 6: Surface and smiles of implied volatilities
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Left upper graph: surface of implied volatilities for European call options on the S&P 500. The

other graphs analyse the sensitivity of the volatility smile to change of parameters and of initial

value λ0 and θ0.
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8 Tables

Table 1: Descriptive Statistics for Returns Data

Value

Mean daily return 0.02%
Standard daily deviation 1.30%

Skewness -0.33
Kurtosis 13.51

Jarque Bera p-value 1e-3
Lillie test p-value 1e-3

Durbin Watson p-value 0e-3

This table reports the mean, the standard deviation, the skewness, the kurtosis, statistics of

normality and serial dependence, for the continuously compounded returns of the S&P 500 from

September 2005 to October 2015.
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Table 2: Filtered loglikelihood

Bi factor model

D.Exp. J. Pos. Exp. J. Neg. Exp. J. Bin. J.

Log. Lik. 6999 6193 6388 6950
AIC -13979 -12367 -12756 -13879

Uni factor model

D.Exp. J. Pos. Exp. J. Neg. Exp. J. Bin. J.

Log. Lik. 6989 6193 6384 6944
AIC -13962 -12371 -12752 -13872

LRT 20 0 8 12

p-value 0.00% 100% 1.83% 0.25%

This table reports the log-likelihood, AIC filtered by the particle filter for the double and single

factor models and the p-value of the log-likelihood ratio test.
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Table 3: Parameters Estimation

Bi factor model

D.Exp. J. Pos. Exp. J. Neg. Exp. J. Bin. J.

µ 0.05 0.05 0.05 0.05
σ 0.12 0.18 0.16 0.12
α 18.78 13.19 9.91 17.95
η 381.80 291.40 220.17 458.06
β 1.77 1.62 1.36 1.44
γ 5.07 1.71 4.28 4.07
δ 8.37 4.68 3.80 4.07
p 0.37 - - 0.37
ρ+ 30.47 30.47 - 30.47
ρ− -33.90 - -33.90 -33.90

Uni factor model

D.Exp. J. Pos. Exp. J. Neg. Exp. J. Bin. J.

µ 0.05 0.05 0.05 0.05
σ 0.12 0.18 0.16 0.128
α 14.71 11.46 8.73 16.17
η 337.08 273.32 208.82 436.55
θ 6.44 2.05 4.78 4.88
p 0.37 - - 0.37
ρ+ 30.47 30.47 - 30.47
ρ− -33.90 - -33.90 -33.90

This table reports the parameters of the double and single factor models fitted with the POT

procedure.
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Table 4: Asymptotic moments

Bi factor model

D.Exp. J. Pos. Exp. J. Neg. Exp. J. Bin. J.

E(θ∞) 8.27 2.61 5.62 6.41
E(λ∞) 22.03 9.46 16.30 29.69√
V(λ∞) 13.01 8.22 8.46 12.92

Uni factor model

D.Exp. J. Pos. Exp. J. Neg. Exp. J. Bin. J.

E(λ∞) 21.80 9.42 16.18 28.61√
V(λ∞) 12.63 8.13 8.38 12.63

This table reports the the asymptotic values of intensities E(θ∞), E(λ∞) and their standard

deviations.
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