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Abstract

In equity option markets, traders face margin requirements both for the options them-
selves and for hedging-related positions in the underlying stock market. We show
that these requirements carry a significant margin premium in the cross-section of
equity option returns. The sign of the margin premium depends on demand pressure: If
end-users are on the long side of the market, option returns decrease with margins, while
they increase otherwise. Our results are statistically and economically significant and
robust to different margin specifications and various control variables. We explain our
findings by a model of funding-constrained derivatives dealers that require compensation
for satisfying end-users’ option demand.

Keywords: equity options, margins, funding liquidity, cross-section of option returns
JEL Classification: G12, G13

∗We thank Bjørn Eraker, Andrea Frazzini, Ruslan Goyenko, Kris Jacobs, Stefan Kanne, Olaf Korn,
Matthias Pelster, Ivan Shaliastovich, as well as participants of the 2016 Annual Meeting of the German
Finance Association and seminar participants at the University of Wisconsin-Madison for valuable discussions
and helpful comments and suggestions. This work was supported by the Deutsche Forschungsgemeinschaft
[UH 107/4-1]. Christian Wagner acknowledges support from the Center for Financial Frictions (FRIC), grant
no. DNRF102.

†Department of Finance, Fisher College of Business, The Ohio State University, Columbus, OH 43210,
hitzemann.6@osu.edu.

‡Institute for Finance, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany,
michael.hofmann@kit.edu.

§Institute for Finance, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, uhrig@kit.edu.
¶Department of Finance, Copenhagen Business School, DK-2000 Frederiksberg, Denmark, cwa.fi@cbs.dk.

1



1 Introduction

Recent research shows that margin requirements are an important determinant of prices in

asset and derivative markets (e.g., Santa-Clara and Saretto, 2009; Gârleanu and Pedersen,

2011; Rytchkov, 2014). While some popular phenomena, such as the negative CDS-bond

basis during the financial crisis, highlight the empirical relevance of margin-related funding

effects, evidence on the general role of margin requirements in derivatives markets is relatively

limited. An important yet open question is whether margin requirements matter for the

returns on stock options. In this paper, we show that the cross-section of equity option

returns contains an economically and statistically significant premium that compensates for

margin requirements in the options market and in the underlying stock market.

Our analysis is guided by a model for derivatives markets, in which option dealers face an

exogenous demand of end-users, hedge their position in the underlying stock, and comply

with margin requirements set by regulators. Margin requirements for the option and the stock

position tie up the dealer’s capital and are compensated by the market if funding is costly.

This gives rise to a margin premium which is priced in the cross-section of equity options.

For a particular option, the magnitude of the margin premium depends on the option’s

margin requirement and the capital requirement for the hedging-related stock position, both

relative to the option’s price. The sign of the margin premium depends on end-user demand

being positive or negative, with higher margin requirements leading to higher option returns

if the dealer takes the long side of the market but lower returns when the dealer is short.

Furthermore, margin premia are larger when funding is scarce and funding costs are high.

We investigate the model predictions for a large sample of U.S. equity options, based on
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margin rules that are applied in practice.1 In particular, the margin for shorting an option

depends on the price of the underlying and the option’s moneyness, while entering a long

position involves depositing a fixed fraction of the option price. For the underlying stock

market, the margin requirement is a fixed fraction of the stock price for all stocks, such

that the cross-sectional variation of required hedging capital comes from the size of the

hedging-related stock position. Our model implies that the compensation for these margin

requirements through margin premia depends on the demand of end-users or equivalently

on the expensiveness of options, which is confirmed by our empirical analysis.2 A naive

univariate sort of delta-hedged option returns by margin requirements yields a negative

margin premium, which vanishes after the inclusion of standard risk factors. On the other

hand, we find highly significant, robust margin premia once we condition on the expensiveness

of options (our proxy for demand pressure). In particular, a strategy that is long in call (put)

options with low margin requirements and short in options with high margin requirements

yields a monthly delta-hedged excess return of 12% (3%) if we restrict our sample on options

with high buying pressure. The opposite strategy, buying options with high margins and

selling low-margin options, makes 2% (2%) per month for options with high selling pressure.

These results match the predictions of our model and indicate that margin premia play an

important role for the cross-section of option returns. To strengthen our argument further,

we rule out several alternative explanations for these results. First, our findings hold both

for call and for put options and are therefore not driven by one of the many effects that are

specific to puts. Second, we argue that margin premia are different from the “embedded
1 For options, we rely on the margin requirements specified by the CBOE margin manual. Minimum

margin requirements on stock positions are defined in Federal Reserve Board’s Regulation T.
2 It would not necessarily be necessary to condition on end-user demand or equivalently on expensiveness

if end-users were consistently short (or long) in all options and at all points in time. Empirical evidence on
actual order imbalance reported by Goyenko (2015), however, suggests that this is not the case.
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leverage” effect proposed by Frazzini and Pedersen (2012), even though the hedging capital

requirement in our model is proportional to the embedded leverage of an option. Frazzini and

Pedersen (2012) suggest that options with higher embedded leverage have smaller returns

due to higher end-user demand for these options. Since we condition on demand pressure in

the empirical analysis, our results are not driven by demand effects. Moreover, we find that

the returns of options that are subject to end-user selling pressure increase with the hedging

capital requirement, which contrasts the negative premia on embedded leverage found by

Frazzini and Pedersen (2012).

Third, we confirm our results by running Fama-MacBeth regressions of option returns on

margin requirements, controlling for a number of additional effects that could potentially

bias our results. In particular, we control for moneyness and maturity effects, option greeks

as determinants of hedging costs (Gârleanu, Pedersen and Poteshman, 2009), liquidity effects

(Christoffersen et al., 2015), systematic risk (Duan and Wei, 2009), as well as the underlying

stock’s volatility (Cao and Han, 2013) and the firm size and leverage. To condition on the

demand pressure of an option, we allow the slope coefficient on margin requirements to

differ across demand pressure quantiles. The results of the regressions confirm those of the

portfolio sorts, yielding a significantly negative margin coefficient for high-demand options

and a significantly positive estimate in the low-demand quantiles. In addition, the regressions

allow us to separate the effects of the options-related margin and the stock-related margin.

Finally, we use the insights of our model to define a market-based funding liquidity measure

that can be calculated from option returns. Based on the model’s prediction that margin

premia should be higher when funding liquidity is scarce, we construct a measure of funding

liquidity from the time series of margin-sorted long-short portfolio returns. We find that this

measure is significantly correlated with the TED spread, thereby providing support for the
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notion that margin requirements affect option returns through the funding channel.

Our paper contributes to a fast-growing literature that emphasizes the role of financial

intermediaries for security prices (He and Krishnamurthy, 2012, 2013). The idea of this

literature is that financial intermediaries – who are often the marginal investors in asset

or derivatives markets – need to be compensated for bearing risk or providing liquidity if

their capacities for doing so are limited. In this spirit, several papers show that margins

and capital requirements are an important factor for asset prices (Asness, Frazzini and

Pedersen, 2012; Adrian, Etula and Muir, 2014; Frazzini and Pedersen, 2014; Rytchkov, 2014)

and derivatives (Santa-Clara and Saretto, 2009; Gârleanu and Pedersen, 2011) if agents are

funding-constrained. A particularity of derivatives markets is that the intermediaries, e.g.,

option dealers, hedge their positions in the underlying market, such that their compensation

is also driven by the costs of the hedging strategy and the amount of unhedgeable risks

(see Gârleanu, Pedersen and Poteshman, 2009; Engle and Neri, 2010; Kanne, Korn and

Uhrig-Homburg, 2015; Leippold and Su, 2015; Muravyev, 2016). In the equity options market,

both the margin requirements for the options themselves and the capital tied up for the

hedging strategy are relevant and priced in the cross-section of option returns, as we show in

this paper.

Furthermore, several papers reveal that the effects described are more pronounced when

funding liquidity is scarce (Chen and Lu, 2016; Golez, Jackwerth and Slavutskaya, 2016)

and vary with the end-user demand (Bollen and Whaley, 2004; Gârleanu, Pedersen and

Poteshman, 2009; Frazzini and Pedersen, 2012; Boyer and Vorkink, 2014; Constantinides and

Lian, 2015). We show that both aspects are also important for the margin premium in the

equity options market: In our case, the sign of the margin premium depends on whether the

end-user demand is positive or negative, making option dealers take the long or the short
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side of the market. The magnitude of this (positive or negative) premium depends on the

available funding liquidity, and we find larger margin premia when funding is scarce.

Finally, our study naturally contributes to the literature on the cross-section of option

returns in general. In this literature, it is shown that the cross-section of option returns can

partly be explained by volatility risk (Coval and Shumway, 2001; Bakshi and Kapadia, 2003;

Schürhoff and Ziegler, 2011), jump risk (Broadie, Chernov and Johannes, 2009), correlation

risk (Driessen, Maenhout and Vilkov, 2009), and systematic risk in general (Duan and Wei,

2009), as well as by option expensiveness (Goyal and Saretto, 2009) and idiosyncratic stock

volatility (Cao and Han, 2013). Recent works reveal that the options’ market liquidity

(Christoffersen et al., 2015) and related liquidity risk (Choy and Wei, 2016) is priced in the

cross-section as well, suggesting that liquidity considerations play an important role for option

dealers. Our analysis confirms this intuition from the funding liquidity perspective, showing

that margin requirements are an important driver of the cross-section of option returns.

The rest of this paper is structured follows. In Section 2, we develop a model for derivatives

markets that allows us to make several predictions on the effect of margin requirements on

equity option returns. Section 3 describes our options sample as well as the margin rules and

the measure for end-user option demand. Section 4 analyzes the returns of option portfolios

that are constructed by sorting our option sample with respect to margin requirements. In

Section 5, we extend our analysis of margin premia by running Fama-MacBeth regressions and

controlling for several variables that drive the cross-section of option returns. We construct

an option-market implied measure for funding liquidity based on margin premia in Section 6.

Section 7 confirms the robustness of our results, and Section 8 concludes the paper.
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2 Option Trading under Funding Constraints

We develop a model for derivatives markets that accounts for two main market features:

margin requirements for derivatives and the underlying stock market, and limited funding

capacities of derivatives traders. In the model, option dealers face an exogenous option

demand of end-users and are compensated by a premium for the costs incurred to satisfy

this demand, similar to Gârleanu, Pedersen and Poteshman (2009). In our case, these costs

arise from margin requirements in the option market and the underlying stock market –

margins tie up capital, which is costly when funding is limited (see Gârleanu and Pedersen,

2011). Combining these features, the model allows us to characterize the effect of margin

requirements on option returns theoretically, and guides our empirical analysis.

Instruments and Payoffs We consider a simple discrete-time economy with a risk-free

asset paying an exogenous rate Rf = 1 + rf , and a risky asset with exogenous price St, which

we call stock. In addition, there is a derivative security with endogenous price Ft, called

option. Let µ̄S = Et(St+1 − RfSt) and µ̄F = Et(Ft+1 − RfFt) denote the expected excess

gains of an investment in the stock and the option, respectively. Furthermore, we denote

the conditional variances and covariances of prices as σ2
S = vart(St+1), σ2

F = vart(Ft+1), and

σSF = covt(St+1, Ft+1).

Agents Following Frazzini and Pedersen (2014), we consider an overlapping-generations

model with agents living for two periods. In time t, the economy is populated by two young

agents: a derivatives end-user who has an exogenous, inelastic option demand d, and a

derivatives dealer with zero wealth, Wt = 0, who satisfies the end-user demand and hedges
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herself through the stock market. The dealer maximizes expected utility of next period’s

wealth by choosing optimal positions x = xt and q = qt in the stock and the option market:

max
x,q

Et(Wt+1)− γ

2 vart(Wt+1), (1)

where γ > 0 characterizes the dealer’s risk aversion.

As a benchmark case, let us consider the standard portfolio choice problem of an unconstrained

dealer, assuming an end-user option demand of zero. In that case, the dealer takes no position

in the option market by assumption and her terminal wealth is given byWt+1 = x(St+1−RfSt).

This yields the well-known solution x∗ = µ̄S

γσ2
S

=: η.

Margin Requirements We now introduce margin requirements into our setting. Specif-

ically, for a position q > 0 in the option market, a net margin of M+
F ≥ 0 has to be held

in the margin account, while the short margin for q < 0 is M−
F ≥ 0. For the stock market,

we assume that the dealer holds an ex-ante optimal stock position of η without incurring

funding costs,3 and has to post a margin MS ≥ 0 for her excess stock holding θ = x− η.4

Altogether, for a portfolio of η + θ stocks and q options, a net margin of

M(θ, q) = |θ|MS +|q|
(
1{q>0}M

+
F + 1{q<0}M

−
F

)
(2)

has to be held in the margin account, earning the risk-free rate. Most importantly, Eq. (2)

implies that the margin requirement of a security is independent of the remaining portfolio
3 In practice, for an institutional option trader, this position may be held by the stock trading desk.

Consequently, its funding costs are not relevant for the optimization problem of the dealer.
4 If one buys a stock, one may use a margin loan of up to St−MS . The remainder has to be financed with

own capital. On the other hand, a short position demands the deposit of St +MS , which may be covered in
part by the short sale proceeds St. In either case, the net capital requirement is MS .
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composition (as also assumed by Gârleanu and Pedersen, 2011, for example).

Funding Finally, we assume that the dealer finances the margins by obtaining funding at

an individual rate r̃ ≥ rf , and we define ψ = r̃− rf as the dealer’s funding spread.5 If r̃ > rf ,

we say that the dealer is funding-constrained.

Under these assumptions, the wealth of a dealer who holds a portfolio of η + θ stocks and

q options evolves according to the following dynamics:

Wt+1 = (η + θ)(St+1 −RfSt) + q(Ft+1 −RfFt)− ψ
(
|θ|MS +|q|

(
1{q>0}M

+
F + 1{q<0}M

−
F

))
.

(3)

By assumption, the dealer satisfies any option demand d in equilibrium. The dealer hedges

the associated risk with an additional stock position θ, provided that the end-user’s option

demand, dealer’s risk aversion, and the covariance between stock and option prices are

sufficiently large, so that the utility gain from risk reduction is larger than the marginal

funding costs of the stock:

Proposition 1 (Hedging). If there is a non-zero option demand d with |dγσSF | > ψMS, the

dealer hedges herself through an additional position of

θ = d∆− sgn(d∆) ψ

γσ2
S

MS (4)

stocks, where ∆ = σSF

σ2
S
.

5 Alternatively, as outlined in Gârleanu and Pedersen (2011), ψ could also be interpreted as shadow costs
of funding arising from binding capital constraints.
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Note that ∆ is a discrete-time version of the option’s delta, such that the dealer implements

a standard delta-hedge, adjusted for the margin that is required for the stock position.

In equilibrium, the current option price Ft establishes in such way that it is, in fact, optimal

for the dealer to satisfy the demand and take an option position of −d. This allows us to

characterize equilibrium option returns.

Proposition 2 (Option Returns). If there is a non-zero option demand d with |dγσSF | > ψMS,

the expected option return is

Et

(
Ft+1 − Ft

Ft

)
= rf + ∆µ̄S

Ft
− dγσ

2
F −∆σSF

Ft
− sgn(d)ψ MF +|∆|MS

Ft
, (5)

where MF = M
− sgn(d)
F is the option margin faced by the dealer, and sgn(d) is the sign of

demand. Equivalently, delta-hedged excess option returns are given by

Et

(
Gt,t+1

Ft

)
= −dγσ

2
F −∆σSF

Ft
− sgn(d)ψ MF +|∆|MS

Ft
, (6)

where Gt,t+1 = Ft+1 −RfFt −∆(St+1 −RfSt) denotes the gains of a delta-hedged portfolio.

The first term of Eq. (6), −dγ(σ2
F −∆σSF )F−1

t , is an analogous result to Gârleanu, Pedersen

and Poteshman (2009): Option returns decrease proportionally with demand, risk aversion

of dealers, and the unhedgeable part of the option dynamics. In addition, delta-hedged

option returns exhibit a twofold margin premium. In line with Gârleanu and Pedersen (2011),

there is a compensation for costly margin requirements of the options, which is given by

the product of the relative margin requirement, the funding spread, and an indicator for

the position held. Furthermore, funding costs of the heding-related stock position in the

underlying are compensated, as well. More precisely, option returns contain a premium for
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the marginal funding costs of the hedging position. Therefore, option returns compensate

for |∆|MS, although the option dealer optimally chooses not to hold a full delta-hedging

position.

Proposition 2 also has a useful implication for option prices.

Proposition 3 (Option Prices). Under the assumptions of Proposition 2, the resulting option

price is given by

Ft = F 0
t + dγ

σ2
F −∆σSF
Rf

+ sgn(d) ψ
Rf

(
MF +|∆|MS

)
, (7)

where F 0
t = Et

(
Ft+1−∆µ̄S

Rf

)
is the option price in the unconstrained equilibrium without option

demand (d = 0, ψ = 0). Consequently, the sign of demand is related to the option’s price

through

sgn(d) = sgn(Ft − F 0
t ). (8)

Intuitively, if there is option demand on the long side of the market, options are relatively

expensive. This result serves as a motivation for our empirical analysis, where we use the

difference of implied and historical volatilities as a measure of price pressure and, consequently,

as an approximation for the sign of demand.

Overall, we define the second term of Eq. (6) as the margin premium

π = − sgn(d)ψ MF +|∆|MS

Ft
, (9)

which depends on the margin requirement faced by the dealer, who might have a long or

short option position, depending on the option demand.
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In the following, we assume that margin loans on long option positions are not possible,6 so

that M+
F = F . Under this additional assumption, the margin premium takes the following

form:

Corollary 1 (Margin Premium). If M+
F = Ft, the margin premium equals

π =


−ψ

(
M−

F

Ft
+ |∆|MS

Ft

)
, Ft > F 0

t ,

+ψ
(
1 + |∆|MS

Ft

)
, Ft < F 0

t .

(10)

As before, the sign of the margin premium depends on the option demand, which can be

inferred from price pressure. In absolute terms, the hedging position induces a premium

ψ|∆|MS/F , which is independent of option demand. On the contrary, even in absolute terms,

the premium on option margin requirements still depends on the position of the dealer. If

the dealer is short, the margin premium reflects the requirement on a short option position

relative to the option’s price, M−
F /F . Otherwise, if the dealer has a long position, the relevant

margin requirement is M+
F /F = 1. Therefore, there is no cross-sectional variation in the

premium on option margins if the dealer is long.

In summary, margin requirements for short option positions, M−
F /F , and the hedging-related

stock position, |∆|MS/F , both relative to the option’s price, are of central importance for

our analysis. In the following, we refer to these quantities simply as option margin m and

hedging capital m̃.

Altogether, we get several testable hypotheses:

6 Under the strategy-based margin rules of the CBOE, margin loans are only allowed for options with a
time to maturity of more than nine months. For such options, the margin requirement is 75% of the options’
price. So even if margin loans are allowed, there is no pronounced cross-sectional variation between different
options in margin requirements relative to the options’ prices.
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Corollary 2. Under the given assumptions, our model predicts that

a) Option returns decrease in option margins and hedging capital requirements for options

in which end-users are long.

b) Option returns increase in hedging capital requirements, but exhibit no cross-sectional

variation with respect to option margins for options in which end-users are short.

c) The effects of option margins and hedging capital requirements are stronger when agents

are more funding-constrained, i.e., for large ψ.

Simulation study

To get an idea about the relative importance of the premia on unhedgeable risks and margin

requirements, we estimate model-implied call option prices and expected option returns using

stochastic simulation.7 First, we simulate 100,000 stock price paths on a fine grid from t = 0

to T = 0.5 years, the latter being the maturity date of the options. We model the underlying

stock price St as a diffusion process with stochastic volatility:

dSt = St(rf + α) dt+ St
√
Vt dW

S
t (11)

dVt = κ(θ − Vt) dt+ σ
√
Vt dW

V
t , (12)

where W S
t and W V

t are two correlated Brownian motions with instantaneous correlation ρ.

Following Broadie, Chernov and Johannes (2007), we set the mean-reversion speed κ = 0.023,

the long-term variance θ = 0.90, the volatility parameter σ = 0.14, and the correlation ρ =

−0.4 as estimated by Eraker, Johannes and Polson (2003). All of these parameters correspond
7 Results for put options are qualitatively similar and are available upon request.
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to daily percentage returns. We set the annual risk-free rate rf to 3% and the equity premium

α to 5%.

Dealer’s risk aversion is set to γ = 4 and we assume a fixed, exogenous demand level d

for all options. Under the chosen parameters, the option dealer optimally chooses to hold

η = 0.56 stocks for speculation. Based on this reference point, we calculate option prices

for exogenous demand levels between −50 and +50 contracts, which represents a rather

high demand pressure in comparison to the speculative stock holding. As in our following

empirical study, option margins are set in accordance with the CBOE margins manual (see

Section 3.2).

For the calculation of option prices, recall the result from Proposition 3:

Ft = Et

(
Ft+1 −∆µ̄S

Rf

)
+ dγ

σ2
F −∆σSF
Rf

+ sgn(d) ψ
Rf

(
MF +|∆|MS

)
(13)

As we consider overlapping generations of agents living for two periods, Eq. (13) may be

chained over time to get an iteration rule for option prices. More precisely, we assume that

dealers have a daily planning horizon, such that the above iteration rule may be used to

calculate option prices each day. The starting point of this iteration is the option value at

maturity, which is equal to its payoff: max (ST −X, 0). To estimate the time-t conditional

moments Et(Ft+1), σ2
F , σSF , and σ2

S, as well as ∆ = σSF/σ
2
S, we use a regression approach in

the spirit of Longstaff and Schwartz (2001). More details on the simulation algorithm are

given in Appendix B.

Fig. 1 shows the resulting option prices for an annual funding spread ψ of zero and 5%,

respectively. If option dealers are not funding constrained, the prices for small demand levels

approximately match the frictionless Black-Scholes prices, given by the dotted line. For higher
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Figure 1: Simulated option prices

This figure shows simulated option prices based on our model dependent on the option’s
moneyness. In particular, we simulate call option prices (for which the moneyness is given by
S/K) and consider different scenarios of end-user demand d. While the left plot illustrates the
resulting option prices for the case that option dealers are not funding-constrained (ψ = 0%),
the right plot assumes an funding spread of ψ = 5%.
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long or short demand, there are substantial deviations reflecting premia on unhedgeable risk.

A non-zero funding spread drives an additional wedge between options with long and short

demand, which more than doubles the price differences.

Fig. 2 shows the corresponding average delta-hedged returns over 20 trading days for different

levels of option margins and hedging capital, respectively. There is a strong relation between

both types of margin requirements and option returns, and the direction of the effect depends

on the respective demand pressure. When end-user demand is positive, option returns are

monotonously decreasing in both types of margin requirements, as expected. On the other

hand, for negative demand, option returns are not only increasing in hedging capital, but also
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Figure 2: Simulated delta-hedged returns

This figure shows simulated delta-hedged option returns based on our model dependent on
the corresponding margin requirements. We consider the margin requirements of an option
dealer both for the option itself (left plot) as well as for a hedging-related position in the
underlying stock (right plot), for different scenarios of end-user demand d. Returns are
calculated on a monthly basis.
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in option margins. At a first glance, this seems contradictory, since margin requirements on

short positions should only have an impact if option dealers are short, hence when end-user

demand is positive. As shown in Fig. 3, the reason for this (apparently) puzzling finding lies

in the positive connection between option margins and hedging capital. For short demands,

both variables are almost perfectly correlated, which explains their similar impact on option

returns. On the other hand, for positive demand levels, the connection between the two

measures is not as strong. In particular, for option margins between 10 and 15, there is almost

no variation in hedging capital, but a clearly monotone decrease in option returns, which

indicates that option margins indeed induce a separate type of margin premium. Finally,
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Figure 3: Endogenous connection between option margins and hedging capital

This figure illustrates the relation of an option’s moneyness and the corresponding margin
requirements based on our model. In particular, we simulate call option prices (for which the
moneyness is given by S/K) and consider different scenarios of end-user demand d. The left
plot shows the margin for the options position itself, the right plot the capital requirement
for a hedging-related position in the underlying stock.
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Fig. 3 shows that hedging capital is bounded, whereas option margins can be arbitrarily large,

a finding that is also confirmed by our empirical analysis of margin requirements described in

Section 3.2.

Simulated portfolio returns

To shed light on the relation between the different return premia, we analyze margin-sorted

portfolio returns of 2 500 randomly chosen call options. Specifically, we randomly draw simple

moneyness, time to maturity between one and sixth months, and a demand between −50

and 50, and simulate the corresponding option price and monthly delta-hedged returns using
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10 000 stock paths. To reduce the impact of outliers, we remove options with extreme margin

requirements. That is, if the resulting option margin is not between 5 and 15, we repeat the

simulation with another set of randomly selected parameters. This margin interval is chosen

to match real-world margin requirements (see Table 2.C).

Using the simulated data, we assign options to demand quintiles, and subsequently, conditional

on demand, to quintiles based on option margins and hedging capital, respectively.8 Table 1

reports long-short returns of the portfolios sorted by option margins (Table 1.A) and hedging

capital (Table 1.B) for different specifications of the model. In the first specification, we

consider the standard model with dealers that are risk-averse and funding-constrained, which

results in monotonously decreasing long-short returns. As we will see later (in Table 3), the

empirically observed patterns are remarkably similar.

In the second specification, option dealers require compensation for their funding costs but

do not demand a premium for unhedgeable risks.9 In this case, the pattern in long-short

returns across demand quintiles is similar to that in the standard model but margin premia

are smaller in absolute terms. The pattern is not entirely monotonic because the margin

premium only depends on the sign of demand and not its level in this specification.

The last two columns of Table 1 report results for repeating the first and second specification

under the additional assumption of zero funding costs, i.e., ψ = 0. If the dealer is risk averse

and demands compensation for unhedgeable risk, the monotonic relation between end-user

demand and margin premia remains qualitatively the same but premia are smaller in absolute

terms compared to the case of the funding-constrained dealer. In the (unrealistic) case that
8 The results are similar when conditioning on option expensiveness instead of end-user demand. In the

empirical analysis, we use option expensiveness as a proxy for demand pressure.
9 To obtain these results, we set γ = 0 in Eq. (13). Note, however, that dealers are still assumed to

optimally hedge their option position; hence, this special case lies outside the original modeling framework.
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Table 1: Margin long-short returns of simulated call option portfolios

This table shows long-short returns of simulated quintile portfolios formed on option margins
conditional on demand. All returns are given in monthly percent.

Panel A: Option margins

Funding constrained unconstrained
Unh. risk averse neutral averse neutral

D
em

an
d

1 (low) 2.93 1.44 2.51 0.24
2 2.19 1.52 0.76 0.18
3 −2.60 1.08 0.27 0.19
4 −4.46 −4.23 −0.94 0.20
5 (high) −5.89 −4.01 −1.18 0.19

Panel B: Hedging capital

Funding constrained unconstrained
Unh. risk averse neutral averse neutral

D
em

an
d

1 (low) 8.88 2.59 6.19 0.46
2 4.84 2.85 2.82 0.38
3 −0.51 2.18 0.52 0.42
4 −4.71 −2.66 −2.08 0.44
5 (high) −7.65 −2.51 −3.44 0.43

the dealer is neither risk averse nor funding constrained there would be no cross-sectional

relation between margin premia and end-users’ option demand.

Our empirical analysis of margin premia in the cross-section of equity option returns follows

the setup of this simulation study. The empirical results in Section 5 confirm the key

properties of margin premia predicted by our model, as summarized by Corollary 2 and

illustrated in the model simulation above.
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3 Data and Methodology

Our analysis builds on options data from February 1996 to August 2013 provided by the

OptionMetrics Ivy DB database. We restrict our sample to options on common stocks with

standard settlement and expiration dates. Further, we remove option-date observations with

missing prices or probable recording errors, that is, options with non-positive bid price or a

bid-ask spread lower than the minimum tick size.10 All prices are corrected for corporate

actions using the adjustment factors provided by OptionMetrics. We use the U.S. Treasury

Bills rate as the risk-free interest rate, which we obtain from Kenneth French’s data library,11

along with standard equity risk factors.

For the calculation of delta-hedged option returns below, we define monthly holding periods

(simply referred to as month) and apply additional filters to the first trading day of a month,

in line with the literature (see Goyal and Saretto, 2009; Driessen, Maenhout and Vilkov,

2009, among others). Specifically, we drop options with zero open interest and missing

implied volatility or delta. We remove options that violate standard no-arbitrage bounds. To

minimize the impact of early exercise, we only keep options with a time value of at least 5%

of the option value.12 Finally, we exclude deep-out-of-the-money puts (i.e., with delta larger

than −0.2), because these act as insurance against crises and are therefore likely subject to

different demand and price pressures than the remaining option sample. In addition, their

outlying high returns during periods of market distress makes inference about margin premia

more imprecise. The results of this paper are robust to modifications of these selection
10 For stocks that are part of the penny-pilot program, the minimum tick size is $0.05 ($0.01) for options

trading above (below) $3. For all other stocks, the minimum tick size is $0.10 ($0.05).
11 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
12 We define the time value of a call option as F −max(S−K, 0), and for a put option as F −max(K−S, 0),

where F is the option’s price, K is the strike price, and S is the price of the underlying stock.
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criteria, as we discuss in Section 7.

Our full option sample consists of 6 058 466 option-months for calls and 3 687 177 for puts,

summing up to 9 745 643 data points in total. Panel A of Table 2 shows more details on the

composition of our sample. On average, we consider 204 398 options written on 2 416 stocks

per year, or 22 options per stock and month.

3.1 Delta-Hedged Option Returns

Following Frazzini and Pedersen (2012), we use monthly delta-hedged option returns for

our analysis. Our monthly holding periods are aligned at the expiration days of standard

exchange-listed options, which is the Saturday following the third Friday of a given month.

That is, we set up our portfolios at the first trading day after an expiration date (usually

a Monday) and unwind positions at the last trading day before the next expiration date

(usually a Friday).

At portfolio formation, say in t = 0, we invest $1 in an option and set up a self-financing

hedging position in the underlying stock. The portfolio value at a later date can then be

determined with the following iteration rule:

Vt+1 = Vt + x (Ft+1 − Ft)− x∆t (St+1 +Dt+1 − St) + rft (Vt − xFt + x∆tSt) , (14)

where x = 1
F0

is the number of options in the portfolio and Dt+1 is the dividend paid in t+ 1.

We rebalance the hedging position in the stock each day, as long as delta is not missing.

Otherwise, we hold the previous stock position until a new value for delta is available.

Finally, at the end of the month, i.e., at t = T , the portfolio has the value VT . As V0 = 1,
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Table 2: Descriptive statistics

This table shows several descriptive statistics on the sample of all equity options excludig
deep-out-of-the-money puts. Panel A informs about the sample composition. For the first
line, we count all available stocks within a year and calculate the mean, median, and standard
deviation over all full years in our sample, i.e., from 1997 to 2012. In addition, quantiles at
the 5% and 95% level are given in the last two columns. Lines (2) to (4) show the respective
results for all options, as well as separately for call and put options. Lines (5) to (7) show
the number of options per stock and months, using data from February 1996 up to August
2013. Panels B and C show summary statistics on delta-hedged option returns and our main
explanatory variables, respectively.

Panel A: Sample composition

Mean Median Std 5% 95%
(1) Stocks per year 2 416 2 387 453 1 592 3 061
(2) Options per year 204 398 184 256 67 906 101 411 317 871
(3) Call options per year 119 485 110 473 37 773 61 442 180 095
(4) Put options per year 84 913 73 783 30 331 39 969 137 776
(5) Options per stock-month 22 14 25 2 68
(6) Call options per stock-month 14 9 16 2 43
(7) Put options per stock-month 9 6 9 1 27

Panel B: Delta-hedged option returns (monthly percent)

Mean Median Std Skewness Kurtosis
(11) Call option returns −1.657 −0.788 26.698 −0.009 5.625
(12) Put option returns 0.011 −0.422 14.624 0.227 3.434

Panel C: Explanatory variables

Mean Median Std 5% 95%
(11) Expensiveness −0.023 −0.013 0.262 −0.455 0.373
(12) Hedging capital 3.274 2.512 2.666 0.825 8.315
(13) Option margin 4.001 1.619 14.605 0.453 12.984
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the corresponding excess return is then given by

rT = VT −
T−1∏
t=0

(1 + rft ). (15)

Panel B of Table 2 presents summary statistics and Fig. 4 shows the average delta-hedged

call and put returns over time.

Figure 4: Monthly averages of excess returns and expensiveness

This figure shows means of monthly excess returns and expensiveness of call and put options.
Returns are trimmed at the 1% level.
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3.2 Margin Rules

We calculate margin requirements for the different options in our sample in line with the rules

and regulations applied in practice. As becomes clear from our model, the margin related

to an option position does not only include the option margin itself, but also the capital

requirement for the underlying stock position that is entered for hedging purposes.

For the options position, we define margins based on the CBOE margins manual. Although

margins can be set individually by each exchange, in practice all major option exchanges

follow the margin requirements defined by the CBOE.13 For a long position in a call or

put option, the CBOE requires the payment of the option premium in full, such that no

additional margin requirement is needed.14 For a (naked) short position in equity options, on

the other hand, the margin rule is more sophisticated: Investors are required to post 20%

of the underlying price reduced by the current out-of-the-money amount, but at least 10%

of the underlying price for call options, and 10% of the strike price for put options. More

formally, the margin is defined as

Call: M−
F = max

(
0.2 · S − (K − S)+, 0.1 · S

)
,

Put: M−
F = max

(
0.2 · S − (S −K)+, 0.1 ·K

)
,

(16)

where K is the option’s strike price. Fig. 5 illustrates the short margin requirements for call

and put options dependent on the option’s simple moneyness, i.e., S/K for calls and K/S

for puts. The option margin m = M−
F /F generally decreases in moneyness, but the relation

13 The rules at CBOE and NYSE agree on margin requirements of option positions. Other option exchanges
(specifically PHLX, NOM, ISE) explicitly demand margin requirements according to CBOE or NYSE margin
rules.

14 For options with a time to maturity of more than 9 months, the margin requirement amounts to 75% of
the options’ price.
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is not completely monotonic.

Figure 5: Cross-sectional variation of margin requirements

This figure visualizes the empirical relation between simple moneyness and margins require-
ments of call and put options. Specifically, we restrict our sample to options with 6 months
to maturity and calculate average margin requirements for equally spaced moneyness bins.
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For a position in the underlying stock, a fixed fraction of the stock price is typically required

as a margin. This fraction may depend on several stock characteristics like the stock price

volatility or market liquidity and can be set individually by each broker. But as stated in the

Federal Reserve Board’s Regulation T, the initial margin requirement has to be at least 50%

of the stock’s price for any new long or short position. Throughout our empirical analysis,

we set the stock margin according to this minimal requirement: MS = 0.5 × S. Since the

hedging capital, m̃ = |∆|MS/F , depends on the delta and the price of the option, the overall

margin for the stock position varies in the cross-section of options as well.15

15 Under these assumptions, the hedging capital requirement is proportional to the option’s embedded
leverage Ω = |∆|S/F . Frazzini and Pedersen (2012) find a negative premium on embedded leverage in the
cross-section of option returns, which they attribute to end-user demand for leverage. As we analyze the
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As visualized in Fig. 3, our model implies that hedging capital should be non-monotonic

and bounded, with maximum value attained at a some moneyness between 0.8 and 0.9. The

empirical data confirms this prediction remarkably well, as shown in Fig. 5: For both option

types, we observe a hump-shaped relation between moneyness and hedging capital. In any

case, this analysis confirms that there is a distinct cross-sectional heterogeneity in both option

margins and hedging capital requirements, which allows the identification of margin premia

that are not predominantly driven by moneyness effects.

It is important to note that in practice, the margin an option dealer has to post might not

be strictly the sum of the option margin and the hedging capital, as the reduced risk due to

hedging activities may result in alleviations of option margin requirements. For example, the

CBOE margin manual requires no margin for fully covered options positions. Therefore, the

option margin effectively would only apply to the part of the position that is not covered,

while the stock margin has to be posted for the whole stock position. As a result, the relevant

margin requirements depend on the specific portfolio of a given dealer and possible individual

margin arrangements.

We account for this difficulty in our empirical analysis by investigating the effect of the

(naked) option margin and the hedging capital separately. If dealers do not hedge their option

positions through the stock market in the real world, only the option margin should have an

effect. On the other hand, if some dealers are exempt from option margin requirements due

to their hedging activities, their hedging capital requirements still induces a margin premium.

Finally, if dealers actually behave as predicted by our model, then both types of margins

have to be posted and should play a role for option returns.

effect of margin requirements conditional on demand pressure, the derived margin premium is different from
the leverage effect and complements the theory on funding constraints in option markets.
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3.3 Demand and Price Pressure

As the margin premium of option returns depends on the sign of end-user demand according

to our model, we need to measure the demand pressure in an option for our empirical analysis.

We choose the option’s expensiveness, defined as the current implied volatility minus the

underlying’s historical volatility, as a suitable proxy for demand pressure, motivated by

two reasons. First, the analysis of Gârleanu, Pedersen and Poteshman (2009) reveals that

empirically, there is a strong relation between the price pressure of an option, as reflected

by the expensiveness, and the corresponding demand pressure. Second, Proposition 3 shows

that also in our model, a specific option is expensive (relative to a benchmark price for zero

demand) whenever the end-user demand for that option is positive, and vice versa.

More precisely, we define an option’s expensiveness as the log difference between its implied

volatility and the underlying stock’s historical volatility, measured as the standard deviation

of log returns over the preceding 365 days.16 Note that by this definition, we use the historical

volatility simply as reference point and make no assumptions on any “true” value of volatility.

The time series of average expensiveness is visualized in Fig. 4.

4 Portfolio Sorts by Margin Requirements

We begin our analysis by sorting options based on their margin requirements. To this end,

we first perform naive single sorts on the margin variables. Second, we consider a double

sort, which sorts options based on their expensiveness first, before forming quintiles for

the margin requirements within each expensiveness quintile. This procedure accounts for
16 We use historical volatilities provided by OptionMetrics. Other proxies for demand pressure are considered

in Section 7.
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the prediction of our model that margin requirements influence option returns in different

directions, depending on the sign of the demand pressure. For all our sorts, we rebalance the

portfolios on the first day of each month, and we perform all sorts separately for calls and

puts. We then calculate the value-weighted average excess return for each of the portfolios,

where we define the corresponding weights as the value of total open interest at portfolio

formation, in line with Frazzini and Pedersen (2012).

To begin with, we construct portfolios of call options sorted by their option margins and

present the results in Table 3. In the first line, we show that a simple univariate sort, which

does not account for different expensiveness levels, generates a negative return on a portfolio

that goes long options with high margins and short options with low margin requirements.

As our model predicts that the margin premium can be positive or negative depending on

demand pressure, this finding suggests that margin premia are more pronounced for high-

expensiveness options in our sample, leading to the negative margin premium on aggregate.

To explore margin premia and their sign in more detail, we conduct portfolio double sorts,

where we assign options to margin quintiles conditional on their expensiveness. We find that

the long-short return of margin-sorted portfolios is indeed significantly negative for the three

highest expensiveness categories (out of five). At the same time, both the magnitude and

significance of the negative portfolio returns decrease with decreasing expensiveness, and

margin premia even become positive for the lowest expensiveness quintile. These results

suggest that option returns decrease with margin requirements for expensive options, but

increase with the margin requirements for cheap options. For example, going long options

with high margins and going short options with low margins yields −11.65% for the most

expensive call options, but 1.61% for calls in the lowest expensiveness quintile.

Table 4 shows long-short returns and alphas of both unconditional and conditional sorts on
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Table 3: Portfolio sorts on option margins

This table shows delta-hedged excess returns of option margin quintile portfolios. The
first line shows the result of an unconditional sort on option margins. The remaining
lines show the corresponding results for double-sorted portfolios. Precisely, options are
first sorted into expensiveness quintiles, then into option margin quintiles. For each of the
resulting 25 portfolios, we report average excess returns, along with long-short returns in
both dimensions. Significance levels are calculated using the procedure of Newey and West
(1987) with 4 lags. All returns are given in monthly percent.

Option margin
1 (low) 2 3 4 5 (high) 5–1

All −0.22 0.03 0.19 −0.47 −3.91∗∗ −3.69∗∗

Ex
pe

ns
iv
en
es
s 1 (low) 0.67 1.56∗∗ 2.18∗∗ 2.05 2.28 1.61

2 −0.02 0.50 0.74 0.71 −1.96 −1.93
3 −0.29 0.10 0.23 −0.10 −3.94∗∗ −3.65∗∗
4 −0.32 −0.04 0.08 −0.75 −6.46∗∗∗ −6.14∗∗∗
5 (high) −0.72∗∗∗ −0.92∗∗∗ −1.73∗∗∗ −3.75∗∗∗ −12.37∗∗∗ −11.65∗∗∗

5–1 −1.39∗∗∗ −2.48∗∗∗ −3.91∗∗∗ −5.80∗∗∗ −14.65∗∗∗ −13.26∗∗∗
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

option margins and hedging capital requirements, respectively, separated into calls (Panel A)

and puts (Panel B). The first column in Panel A corresponds to the option margin long-short

returns from Table 3, and the other returns are based on analogous sorts. Also for the sort by

hedging capital requirements, we observe a negative long-short return for high-expensiveness

options and a positive one for the low-expensiveness quintiles. These results hold for calls

and for puts, with the only difference that the positive long-short return for cheap options is

highly significant for puts, but not significant for calls. Overall, our sorts show that long-short

returns with respect to margin requirements are monotonously decreasing in expensiveness,

and the difference between the related portfolio return for high-expensiveness options and

the one for low-expensiveness options is highly significantly negative in all cases.
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Table 4: Excess returns and alphas of expensiveness-margin portfolios

This table shows long-short returns and alphas of quintile portfolios on option margins and
hedging capital, respectively. In the first line, we report results from unconditional sorts, the
remaining lines correspond to double-sorted portfolios. Precisely, at the beginning of each
month, options are first sorted into expensiveness quintiles, then into quintiles on option
margins and hedging capital, respectively. We form margin long-short returns within each
expensiveness quintile and report the corresponding time-series averages and alphas. Finally,
the last line shows the return slope, i.e., the difference between long-short returns in the
highest and lowest expensiveness quintile. Four factor alphas are computed with respect
to market excess return, size, book-to-market (Fama and French, 1993) and momentum
(Carhart, 1997). The five factor alpha includes an additional zero-beta index straddle return
factor (Coval and Shumway, 2001). Significance levels are calculated using the procedure of
Newey and West (1987) with 4 lags. All returns and alphas are given in monthly percent.

Panel A: Call options

Option margin long-short Hedging capital long-short
Return α(4) α(5) Return α(4) α(5)

All −3.69∗∗ −1.47 −1.30 −2.01∗ −0.48 −0.32

Ex
pe

ns
iv
en
es
s 1 (low) 1.61 3.96∗∗ 4.15∗∗ 1.59 3.11∗∗ 3.29∗∗

2 −1.93 0.15 0.41 0.06 1.56 1.81
3 −3.65∗∗ −1.33 −1.25 −1.41 0.27 0.42
4 −6.14∗∗∗ −3.75∗∗∗ −3.64∗∗∗ −3.74∗∗∗ −2.02∗∗ −1.89∗∗
5 (high) −11.65∗∗∗ −9.68∗∗∗ −9.61∗∗∗ −7.20∗∗∗ −5.86∗∗∗ −5.74∗∗∗

5–1 −13.26∗∗∗ −13.63∗∗∗ −13.77∗∗∗ −8.79∗∗∗ −8.97∗∗∗ −9.02∗∗∗
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Panel B: Put options

Option margin long-short Hedging capital long-short
Return α(4) α(5) Return α(4) α(5)

All 0.08 1.10 1.30 −0.02 0.82 0.99

Ex
pe

ns
iv
en
es
s 1 (low) 1.90∗∗ 2.72∗∗∗ 2.86∗∗∗ 1.78∗∗ 2.39∗∗∗ 2.49∗∗∗

2 1.46 2.19∗∗ 2.37∗∗∗ 1.23 1.82∗∗ 1.98∗∗
3 0.91 1.80∗ 1.97∗∗ 0.58 1.25 1.40∗
4 0.02 1.22 1.47 −0.50 0.46 0.67
5 (high) −3.23∗∗∗ −1.94 −1.71 −3.06∗∗∗ −1.91 −1.71
5–1 −5.13∗∗∗ −4.65∗∗∗ −4.57∗∗∗ −4.84∗∗∗ −4.30∗∗∗ −4.20∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.130



We consider different risk adjustments of the portfolio returns to rule out non-margin related

effects in our return series. Specifically, we report alphas with respect to the Carhart (1997)

four factor model, which includes the Fama and French (1993) factors (market excess return,

size, and value) plus momentum. We also report alphas of a 5-factor model that additionally

includes an option volatility factor in line with Coval and Shumway (2001). With these risk

adjustments, the unconditional margin premium for call options is no longer significant. On

the other hand, the positive long-short returns for low-expensiveness calls become significant

now as well, while there are no notable changes for the other conditional results.

The empirical findings confirm the predictions of our model. More precisely, Corollary 2a)

predicts that option returns decrease with both the option margin and the hedging capital

when end-users are long, which is clearly confirmed by the highly significantly negative

long-short return for high-expensiveness options. For options in which end-users are short,

Corollary 2b) predicts that option returns increase with the margin on the stock position as

the option dealers are now on the other side of the market. Our empirical results confirm

this prediction for put options, and the respective returns for call options are positive, but

not significant. On the other hand, there should be no cross-sectional effect of the (short)

option margin in this case, as the option dealers are long and the relative (long) margin they

have to post is identical for all options. Yet, we do find a significant cross-sectional return

difference for puts. Taking a closer look at the margin data suggests that these contradictory

results may be driven by the empirical regularity that hedging capital requirements are high

(low) when option margins are high (low), as illustrated in Fig. 6. Due to this correlation

between hedging capital and option margins, the double sorts may not be able to disentangle

the associated effects on option returns, but we will be able to do so in our regression analysis

that follows next.
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Figure 6: Relation between option margins and hedging capital

This figure visualizes the correlation of option margins and hedging capital. We trim both
option margins and hedging capital requirements at the 5 percent level and divide the
remaining values into 200 by 200 bins. For each bin, the color at the corresponding coordinate
represents the frequency of this combination.
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5 Regression Analysis

The portfolio sorts in the previous section strongly suggest that a significant margin premium

is priced in the cross-section of option returns, in line with the predictions of our model. To

corroborate this evidence, we run Fama-MacBeth regressions, which enhances our analysis

along three dimensions: First, we estimate actual slope coefficients for margin-related effects

instead of relying on return differences of high- and low-margin portfolios. Second, the

regression approach allows us to include several control variables as potential drivers of option

returns. Third, by including both types of margin requirements – the option margin and the
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hedging capital – in a regression model, we are able to disentangle the associated effects on

option returns.

Since our results in Section 4 suggest that margin requirements induce a similar premium for

call and put option returns, we run the regressions on the combined sample of both option

types.17

To test for the demand pressure-conditional margin premium effects predicted by our model,

we allow the slope coefficients on margin requirements to be different across expensiveness

levels. More specifically, we assign options to expensiveness quintiles and run monthly

cross-sectional regressions of delta-hedged option returns on option margins m and hedging

capital m̃,

ri,t+1 = α +
5∑

k=1

(
1{i∈qk}βkmi,t + 1{i∈qk}γk m̃i,t

)
+ control variables + εi,t+1, (17)

where 1{i∈qk} = 1 if option i belongs to expensiveness quintile qk, and zero otherwise.

Table 5 reports the regression results. Specifications (i) and (ii) present results for regressing

delta-hedged option returns either on the required option margins or on the required hedging

capital. These regressions unanimously confirm the results of the portfolio sorts: In both cases,

there is a significantly negative coefficient for margin requirements in the high-expensiveness

quintiles, and a significantly positive one for low-expensiveness options.

We enrich these models by including several option-, stock-, and firm-specific control variables

in models (iii) and (iv). In particular, we control for the options’ open interest, delta, time to

maturity, gamma and vega. Controls for stock characteristics are chosen along the lines of

Christoffersen et al. (2015): We include the underlying stock’s GARCH volatility estimate and
17 Separate analyses for call and put options yield similar results, see Appendix C.
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Table 5: Fama-MacBeth regressions

This table reports Fama-MacBeth regression results of monthly delta-hedged option returns.
The considered option sample consists of all call options and put options with an ex-ante
delta of at most −0.2. Dependent variables are the options’ margin and hedging capital
requirements. We estimate segmented regression coefficients based on expensiveness quintiles,
which are formed at the beginning of each month. Below, option margin (k) and hedging
capital (k) refer to the respective margin variable for options within the k-th expensiveness
quintile. Control variables on the option level are the relative bid-ask spread, the logarithm
of the option’s open interest, delta, gamma, vega, as well as time to maturity in days. In
addition, we include a GARCH estimate of the underlying stock’s historical volatility, its
systematic risk proportion, as well as the firms’ size and balance sheet leverage. All coefficients
are given in percent, significances are based on Newey-West standard errors with 4 lags.

Model (i) (ii) (iii) (iv) (v) (vi)
Option margin (1) 0.69∗∗∗ 0.70∗∗∗ 0.14 0.15
Option margin (2) 0.10 0.09 −0.15∗ −0.10
Option margin (3) −0.20∗ −0.22∗∗ −0.28∗∗ −0.20∗
Option margin (4) −0.61∗∗∗ −0.64∗∗∗ −0.52∗∗∗ −0.43∗∗∗
Option margin (5) −1.14∗∗∗ −1.15∗∗∗ −0.56∗∗∗ −0.48∗∗∗

Hedging capital (1) 0.97∗∗∗ 0.81∗∗ 0.97∗∗∗ 0.84∗∗∗
Hedging capital (2) −0.03 −0.34 0.34 0.04
Hedging capital (3) −0.58∗∗ −0.97∗∗∗ −0.14 −0.52∗
Hedging capital (4) −1.24∗∗∗ −1.69∗∗∗ −0.47∗∗ −0.92∗∗∗
Hedging capital (5) −2.50∗∗∗ −2.99∗∗∗ −1.67∗∗∗ −2.14∗∗∗

Log(open interest) −0.31∗∗∗ −0.30∗∗∗ −0.28∗∗∗
Delta −0.33∗∗∗ 0.20 −0.07
Time to maturity 0.01∗∗ 0.00 0.00
Gamma 3.42 10.90∗∗ 4.71
Vega 0.02∗∗∗ 0.05∗∗∗ 0.02∗∗
Stock volatility −0.39∗∗∗ −1.00∗∗∗ −0.87∗∗∗
Systematic risk 1.52 1.25 1.01
Firm size 0.30∗∗∗ 0.36∗∗∗ 0.34∗∗∗
Firm leverage 0.36 0.71 0.60
Constant 0.38 1.77∗∗∗ −5.55∗∗ −2.00 1.17∗∗∗ −2.50
Average R2 0.04 0.04 0.05 0.06 0.05 0.07

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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its systematic risk proportion (defined as the square root of the R-square from the regression

of stock returns on Fama-French and momentum factors, as in Duan and Wei, 2009). Finally,

firm size (measured as the logarithm of market capitalization) and firm leverage (the value of

equity divided by the sum of long-term debt and the par value of preferred stock) are included.

We find that our results are robust to controlling for all these effects. While especially the

options’ bid-ask spread, the open interest, and the underlying stock volatility seem to be

significant drivers of option returns, the effect of margin requirements is almost unaffected

when we include these variables.

Finally, we run regressions that include both the option margin and the hedging capital

requirement as explanatory variables. The results for specifications (v) and (vi) concisely

match the cross-sectional predictions of our model. Consistent with Corollary 2a), we find

that margin premia are significantly negative for expensive options, both for the options

margin as well as the hedging capital requirement. In line with Corollary 2b), we find that,

on the one hand, the premium for the hedging capital requirement is significantly positive

for the least expensive options. On the other hand, there is no significant return differential

for cheap options with high compared to low option margin requirements. These results are

robust to the inclusion of control variables in specification (vi).

6 Option-Market Implied Funding Liquidity

In the previous sections, we have presented evidence that margin requirements are priced

in the cross-section of equity options, consistent with the predictions of our model. In our

model, margin premia arise from compensation that dealers require for taking unhedgeable

risk as well as for funding costs. Hence, margin premia should also vary in the time series if
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funding conditions change over time. To provide evidence that margine premia are related

to funding conditions, we use the insights of our model to define an option returns-implied

measure of funding costs.18 We then show that the time series of estimated funding costs is

correlated with the TED spread, a standard measure of funding liquidity.

Our model implies, and our empirical results confirm, that option returns reflect significantly

negative premia for hedging capital and option margin requirements for expensive options and

a significantly positive premium for hedging capital requirements for cheap options. Drawing

on the double sort-setup that we use in the model simulation and in the empirical analysis,

we use ri,jt+1 to denote the average return of options in the j-th margin quintile portfolio of the

i-th expensiveness quintile portfolio. Options in quintiles i = 1 (i = 5) are cheap (expensive)

and options in quintiles j = 1 (j = 5) are associated with low (high) margin requirements,

respectively. Denoting the portfolio’s average hedging capital by m̃i,j
t and the average option

margin by mi,j
t , we obtain from Proposition 2 that the expected long-short returns of buying

high and selling low margin options, Et

(
lsit+1

)
, are19

Et

(
ls1
t+1

)
= Et

(
r1,5
t+1 − r

1,1
t+1

)
= ψt

(
m̃1,5
t − m̃1,1

t

)
, (18)

Et

(
ls5
t+1

)
= Et

(
r5,1
t+1 − r

5,5
t+1

)
= ψt

(
m5,5
t −m5,1

t + m̃5,5
t − m̃5,1

t

)
. (19)

These equations show that normalizing the long-short returns by the corresponding differentials
18 Our approach is related to other recent work that uses market-based funding liquidity measures, such as

Chen and Lu (2016) and Golez, Jackwerth and Slavutskaya (2016). They motivate the use of market-based
funding liquidity measures by arguing that such measures might be more suitable to describe the actual
funding situation of investors than measures based on stated interest rates.

19 To fix ideas, we assume that options in the lowest (highest) expensiveness quintile are throughout subject
to negative (positive) end-user demand pressure. In addition, we assume that there either is no unhedgeable
risk or that the premia on unhedgeable risk are homogeneous across expensiveness-margin portfolios, so that
they cancel out.
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in margin requirements provides us with the implied funding spread ψt, and we define

ψ̂t,t+1 = ls1
t+1 + ls5

t+1
m1
t +m5

t

. (20)

as our measure of funding liquidity.20

We compute the time-series of ψ̂t,t+1 using the double-sorted option portfolio returns from

Section 4, as the equally-weighted average of estimates implied by call and put options,

respectively. To test the relation of our measure to funding liquidity, we run time-series

regressions on the TED spread and control variables.

The results in Table 6 show that our funding proxy is positively related to the TED spread at

the time of portfolio formation. Additionally, we find that options-implied funding liquidity

is negatively related to changes in the TED spread. This result is consistent with the notion

that a tightening of funding conditions is associated, on the one hand, with an increase in

expected margin premia, and, on the other hand, with contemporaneously realized margin

premia being low. These findings are robust to the inclusion of average option returns and

lagged proxy returns.

In summary, these results provide supportive evidence for the funding cost channel of margin

premia in option returns featured by our model. More specifically, the significant link between

the option returns-based proxy of funding liquidity and the TED spread confirms Corollary 2c)

that the price impact of margin constraints strengthens with funding constraints.

20 From a conceptual point of view, we could estimate ψ from the long-short returns of either the expensive
or the cheap options. In our empirical application, we combine both with the intention to make the measure
robust to time-variation in demand pressure and or other variables that might have different effects on cheap
versus expensive options.
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Table 6: Regression analysis of the funding liquidity measure

This table shows results from time series regressions of the funding liquidity measure on the
lagged 3-month TED spread and its contemporary change. We include the average return of
all considered options and the lagged return of the proxy variable as controls. All variables
are given in monthly percent. The standard errors are calculated using the Newey-West
estimator with a lag length of 4 months.

Model (i) (ii) (iii) (iv) (v)
Lagged TED spread 6.07∗∗∗ 5.29∗∗∗ 6.23∗∗∗ 5.55∗∗∗ 4.83∗∗

(2.14) (1.97) (2.35) (1.93) (2.33)
Change in TED spread −3.93∗ −3.65

(2.16) (2.66)
Average option return 0.00 0.00

(0.01) (0.01)
Lagged proxy return 0.14 0.14

(0.11) (0.11)
Constant 0.34∗∗∗ 0.37∗∗∗ 0.33∗∗∗ 0.28∗∗∗ 0.31∗∗∗

(0.11) (0.11) (0.11) (0.10) (0.10)
Observations 212 211 212 211 210
Adjusted R2 0.04 0.05 0.04 0.06 0.06

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

7 Robustness Checks

We perform several robustness checks to ensure that our results do not depend on the specific

design of our empirical analysis. In particular, we show that our findings are robust to

modifications of the sample selection procedure as well as to alternative specifications of the

margin requirements and other important variables.

Margin variables In our model, we assume independent option and stock margins, neglect-

ing the possible margin reductions due to hedging activities. In this regard, it is important

to note that the margin effects are not an artifact of these simple margin proxies, but hold as
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well under more sophisticated portfolio margin rules.

Specifically, the CBOE introduced new portfolio margin rules in April 2007, which may be

used as an alternative to the strategy-based margin requirements. Under portfolio margining,

margin requirements are calculated to reflect the overall risk of an investor’s whole portfolio.

To calculate the margin requirements, an investor’s option positions are grouped by their

respective underlying, together with potential positions in the underlying itself. Each of

the resulting sub-portfolios is then evaluated at ten hypothetical market scenarios. For

example, in the case of equity options, the price of the underlying asset is assumed to move

along ten equidistant points in the range between −15% and +15% from the current market

value. For each scenario, option values are calculated with a theoretical model, resulting in a

hypothetical value for the sub-portfolio. The margin requirement for this sub-portfolio is

then defined as the least portfolio value among these evaluation points, but at least $.375 per

option contract. The whole margin requirement for the investor is then defined as the sum of

the margin requirements of the sub-portfolios.

Following Leippold and Su (2015), we calculate margin requirements for hypothetical portfolios

using the Black-Scholes model. Table 7 shows the resulting margin premia for a (degenerate)

portfolio of a naked short option position and a delta-hedged short option position, respectively.

In both cases, we find decreasing margin long-short returns and a highly significant return

slope, forming a similar pattern as before.

Moneyness-Maturity subsamples Our main analyses are based on a rather large option

sample. To verify that our results are not driven by moneyness patterns or outliers, we form

double-sorted portfolios for a range of subsamples. Specifically, we group options into five

bins by months to maturity and the absolute value of delta, respectively. For each subsample,
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Table 7: Conditional sorts on portfolio margins

This table shows long-short returns on portfolio margins, conditional on expensiveness.
Specifically, we sort options into expensiveness quintiles, then into quintiles of the portfolio
margin of a naked short option and a delta-hedged short position, respectively. We report
average long-short returns per expensiveness group and the resulting return slope across
expensiveness. All returns are given in monthly percent, significances are based on Newey
and West (1987) standard errors with 4 lags.

Naked Delta-hedged
Call options Put options Call options Put options

Ex
pe

ns
iv
en
es
s 1 (low) 1.64 1.98∗∗ 1.63 1.97∗∗

2 −0.28 1.37 −1.40 1.30
3 −2.10 0.63 −3.02∗ 0.70
4 −4.82∗∗∗ −0.31 −6.29∗∗∗ −0.31
5 (high) −9.73∗∗∗ −3.31∗∗∗ −13.34∗∗∗ −3.27∗∗∗

5–1 −11.37∗∗∗ −5.29∗∗∗ −14.97∗∗∗ −5.24∗∗∗
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

we run a similar portfolio analysis as discussed in Section 4. That is, we first sort options

into expensiveness quintiles. Then, we form margin quintiles conditional on expensiveness

and calculate the corresponding margin long-short return as difference between the returns

of the highest and lowest margin quintile portfolio. To quantify the overall margin effect,

we calculate the difference between the margin long-short return in the highest and lowest

expensiveness quintile. Table 8 shows the time-series averages of these return slopes. Almost

all return slopes are significantly negative, underpinning the previous results.

Further robustness checks We exclude deep-out-of-the-money puts in our main analyses

since these options realize enormous returns in market declines, which distort the portfolio

sorts and regressions. As shown in the first column of Table 9.B, without restrictions on

moneyness, margin long-short returns of put options are still monotonously decreasing in
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Table 8: Delta-maturity subsample analysis

In this table, we analyze the magnitude of conditional margin long-short returns for several
subsamples on delta and time to maturity. Within each subsample, we first sort all options
into expensiveness quintiles. Then, we form margin quintiles conditional on expensiveness.
To quantify the margin effect, we report the average difference of margin-long short returns
in the highest and lowest expensiveness quintile. Below, we report time-series averages of
these return slopes for each subsample. Significance levels are calculated using the procedure
of Newey and West (1987) with 4 lags. All returns and alphas are given in monthly percent.

Panel A: Subsamples on delta

Option margin Hedging capital
Abs. delta Call options Put options Call options Put options
0.0–0.2 −24.97∗∗∗ −6.80∗∗ −21.03∗∗∗ −15.79∗∗∗
0.2–0.4 −9.67∗∗∗ −4.69∗∗∗ −8.83∗∗∗ −4.91∗∗∗
0.4–0.6 −3.26∗∗∗ −3.64∗∗∗ −3.53∗∗∗ −3.63∗∗∗
0.6–0.8 −2.10∗∗∗ −3.44∗∗∗ −1.92∗∗∗ −3.28∗∗∗
0.8–1.0 −1.71∗∗∗ −2.11∗∗∗ −1.65∗∗∗ −2.36∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Panel B: Subsamples on time to maturity

Option margin Hedging capital
Months Call options Put options Call options Put options
1 −27.98∗∗∗ −7.70∗∗∗ −17.36∗∗∗ −6.09∗∗∗
2 −17.28∗∗∗ −4.92∗∗∗ −9.12∗∗∗ −3.50∗∗∗
3 −16.87∗∗∗ −1.95∗∗ −11.27∗∗∗ −1.82
4-6 −7.76∗∗∗ −2.21∗∗∗ −5.40∗∗∗ −2.07∗∗∗
7-12 −3.38∗∗ −1.32∗∗ −2.56∗∗ −1.70∗∗
>12 −3.67∗∗ −1.40∗∗∗ −3.11∗∗∗ −1.24∗∗∗

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

expensiveness, but the return slope of −2.88 is not statistically significant. If we remove all

option-months containing at least one daily option return of more than 1 000%, the overall

margin effect for put options increases to highly significant 6.91% per month, as shown in

the second column. So even this rather innocuous filter criterion on extreme returns has a
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significant impact on put results, whereas call returns show almost no change.

As shown in the third column, we also find a more pronounced margin effect if we change our

specification from value weighting to equal weights. With equal weighting, we have larger

positions in illiquid options, where the role of option dealers is more important, resulting in

larger long-short return due to their funding costs.

The margin effect is also robust to other choices of the expensiveness proxy. For example,

we repeat our analysis with a historical baseline volatility estimated over the preceding 60

instead of 365 days. Although this measure adjusts faster to changing stock volatility, it is

subject to higher estimation error. Nevertheless, we also find a significant margin effect under

this specification.

To rule out potential distortions by small firms with illiquid options, we repeat our analysis

also for the subsample consisting of options on S&P 500 index (SPX) members. As shown in

the fifth column, we find for call options an average overall margin premium of 9.73%, which

is a bit smaller than the premium of 13.26% in the full sample, but still highly significant.

We have argued that the conditional margin premia are different from the unconditional

leverage effect documented by Frazzini and Pedersen (2012). As an additional check on this

hypothesis, in the last column, we present regression alphas of long-short returns with respect

to the betting against beta (BAB) leverage factor, which goes long low leverage options

and short high leverage options. These alphas are decreasing in expensiveness and highly

significant for both call and put options, as expected.
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Table 9: Further robustness checks on conditional margin long-short returns

This table shows several robustness checks on the conditional margin long-short returns given
in Table 4. The first column shows analogous long-short returns for all options, i.e., without
any filter on delta. The second column is also based on the full cross-section of options,
but removing options-months containig daily option returns of more than 1 000%. In the
third column, we repeat the original analysis using equally weighted portfolios. The fourth
column shows results for another expensiveness measures, where we used a 60 day window
to calculate the historical baseline volatility. We also report margin long-short returns for
options on SPX index members, and alphas with respect to the betting against beta (BAB)
factor of Frazzini and Pedersen (2012). Significances are based on Newey and West (1987)
standard errors with 4 lags.

Panel A: Call Options

All All (filtered) Equal weights IVHV(60) SPX members BAB alpha

Ex
pe

ns
iv
en
es
s 1 1.61 0.89 7.40∗∗∗ 0.78 0.84 1.99

2 −1.93 −2.62 −0.31 −2.16 0.06 −1.53
3 −3.65∗∗ −3.85∗∗ −5.17∗∗∗ −3.51∗∗ −5.13∗∗∗ −3.16∗
4 −6.14∗∗∗ −6.53∗∗∗ −10.06∗∗∗ −5.54∗∗∗ −6.69∗∗∗ −5.77∗∗∗
5 −11.65∗∗∗ −11.91∗∗∗ −17.67∗∗∗ −9.54∗∗∗ −8.89∗∗∗ −10.80∗∗∗

5–1−13.26∗∗∗ −12.80∗∗∗ −25.06∗∗∗ −10.32∗∗∗ −9.73∗∗∗ −12.79∗∗∗
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Panel B: Put Options

All All (filtered) Equal weights IVHV(60) SPX members BAB alpha

Ex
pe

ns
iv
en
es
s 1 3.46∗∗ 3.30∗∗ 4.75∗∗∗ 1.76∗ 0.34 2.03∗∗

2 3.18∗∗ 3.05∗ 2.85∗∗∗ 1.55 0.77 1.75∗
3 2.33 1.81 1.17 0.64 0.37 1.18
4 0.39 −0.46 −0.23 −0.21 −1.14 0.30
5 0.58 −3.61 −4.37∗∗∗ −2.35∗∗ −0.51 −2.68∗∗

5–1 −2.88 −6.91∗∗∗ −9.12∗∗∗ −4.10∗∗∗ −0.85 −4.71∗∗∗
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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8 Conclusion

This paper shows that a margin premium is priced in the cross-section of equity option

returns. The margin premium compensates funding-constrained option dealers for the capital

that is tied up when they satisfy the option demand of end-users. In addition to the margin

requirement for the option itself, capital is also required for hedging the options position in

the underlying market. To identify the margin premium empirically, it is crucial to realize

that its sign depends on whether option dealers take the long or the short side of the market.

Taking demand pressure into account, the returns of options portfolios sorted by margin

requirements decrease with margins when option dealers are short, but increase with margin

requirements when option dealers are on the long side of the market. We confirm these

findings in Fama-MacBeth regressions, controlling for several other drivers of option returns

suggested by previous research.

Finally, we use the time series of margin long-short portfolio returns to construct an option-

market based measure for funding liquidity. Our funding measure is significantly correlated

with the TED spread, which confirms that margin requirements affect option returns through

the funding channel.
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A Proofs

Proof of Proposition 1. The maximization problem given in Eq. (1) together with Eq. (3) is
equivalent to maximizing the function

f(θ, q) =(η + θ)µ̄S + qµ̄F −
γ

2
(
(η + θ)2σ2

S + 2(η + θ)qσSF + q2σ2
F

)
− ψ

(
|θ| M̃ +|q|

(
1{q>0}M

+ + 1{q<0}M
−
))

.
(21)

For q, θ 6= 0, this function is differentiable, and setting both partial derivatives to zero yields

θ = 1
γσ2

S

(
−qγσSF − ψ sgn(θ)M̃

)
,

q = 1
γσ2

F

(
µ̄F − (η + θ)γσSF − ψ sgn(q)M sgn(q)

)
.

(22)

In equilibrium, we have q = −d, which implies θ as given by Eq. (4). The solution is defined
(and optimal) as long as |γσSFd| > ψM̃ .

Proof of Proposition 2. Inserting Eq. (4) in Eq. (22), we get

q = 1
γσ2

F

µ̄F −
(
η + (d∆− ψ

γσ2
S

sgn(d∆)M̃)
)
γσSF − ψ sgn(q)M sgn(q)


⇔ µ̄F = ∆µ̄S − dγ(σ2

F −∆σSF )− sgn(d)ψ(M +|∆| M̃).
(23)

Rearranging to (delta-hedged) option returns gives the results.

Proof of Proposition 3. By construction, the dealer’s optimal excess stock position is θ = 0
for zero option demand. This implies that the optimal option position is given by

q = 1
γσ2

S

(µ̄F − ηγσSF ) != 0, (24)

which in turn is equivalent to
µ̄F = ηγσSF = ∆µ̄S. (25)

Rearranging this formula yields

Ft = E
(
Ft+1 −∆µ̄S

Rf

)
≡ F 0

t . (26)
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Using this notation, Eq. (7) is just a reformulation of Eq. (5).

Note that σ2
F −∆σSF = σ2

F (1− σ2
SF

σ2
F σ

2
S
) = σ2

F (1− (corrt(Ft+1, St+1))2) ≥ 0. Therefore, we get
that

Ft − F 0
t = d γ

σ2
F −∆σSF
Rf︸ ︷︷ ︸
≥0

+ sgn(d) ψ

Rf

(
M +|∆| M̃

)
︸ ︷︷ ︸

≥0

, (27)

implying sgn(d) = sgn(Ft − F 0
t ).

B Simulation Algorithm

To begin with, we simulate N stock price paths using the dynamics specified in Eqs. (11)
and (12). Then, we specify the option to be simulated by its time to maturity T , strike
price K, and the associated demand level d, which is assumed to be constant over time.
At time T , the call option price corresponding to the i-th sample path is given by

F (T, i) = max(S(T, i)−K, 0). (28)

Given option prices in t+ 1, we calculate the time-t option prices by backward induction, as
implied by Proposition 3:

Ft = 1
Rf

Et(Ft+1)− σSF
σ2
S

(
Et(St+1)−RfSt

)
+ dγ

(
σ2
F −

σ2
SF

σ2
S

)

+ sgn(d)ψ
(
MF +

∣∣∣∣∣σSFσ2
S

∣∣∣∣∣MS

) (29)

For this step, we need estimates for Et(Ft+1), Et(St+1), σ2
F = vart(Ft+1), σ2

S = vart(St+1), and
σSF = covt(St+1, Ft+1). All of these terms are in fact conditional expectations, so they can
be estimated using the regression technique proposed by Longstaff and Schwartz (2001).
For example, we estimate Et(Ft+1) as the fitted value F̂ i

t+1 from a cross-sectional regression
of Ft+1 on several time-t state variables across all sample paths:

F i
t+1 = αt +

nj∑
j=1

nk∑
k=1

βj,kt yi,j,kt + εit+1 (30)

We obtain suitable dependent variables yi,j,kt = fk(xi,jt ) by evaluating the first five weighted
Laguerre polynomials fk, as defined in Longstaff and Schwartz (2001), at several time-t state
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variables xi,jt . A natural choice for a state variable is the underlying stock price, xi,1t = Sit ,
but we also include the Black-Scholes call option price, xi,2t = Ci

t , as well as the respective
square roots and pairwise products of these variables. The inclusion of the Black-Scholes
option price increases the goodness of fit due to its similarity to the modeled option price,
and being just a function of time-t variables, it is a viable choice for an additional state
variable. The square root terms introduce odd powers of the stock and Black-Scholes option
prices to the set of state variables, which significantly improves the estimation results.
The variances and covariances are estimated in a similar fashion. For example, (σ2

F )it is
estimated as the fitted value from a regression of (F i

t+1−Et(F i
t+1))2 on the dependent variables

introduced above, using F̂ i
t+1 as estimate for Et(F i

t+1).
Finally, we impose several constraints on the estimates to take account of basic statistical
and economical properties. For example, we require that conditional variances are positive,
that the implied correlation between the stock and call option prices is always between zero
and one, and that the resulting option prices are positive and less than the stock price. If
an estimate violates one of these constraints, we replace the estimate with the respective
boundary value. In any case, in a frictionless economy with a diffusive stock price process,
simulated option prices fit theoretical Black-Scholes prices very well, which we view as
justification for the chosen simulation algorithm.

C Additional empirical results
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Table A1: Fama-MacBeth regressions (Call options)

This table reports Fama-MacBeth regression results of monthly delta-hedged option returns,
based on the sample of all call options. Dependent variables are the options’ margin
and hedging capital requirements. We estimate segmented regression coefficients based on
expensiveness quintiles, which are formed at the beginning of each month. Below, option
margin (k) and hedging capital (k) refer to the respective margin variable for options within
the k-th expensiveness quintile. Control variables on the option level are the relative bid-ask
spread, the logarithm of the option’s open interest, delta, gamma, vega, as well as time
to maturity in days. In addition, we include a GARCH estimate of the underlying stock’s
historical volatility, its systematic risk proportion, as well as the firms’ size and balance
sheet leverage. All coefficients are given in percent, significances are based on Newey-West
standard errors with 4 lags.

Model (i) (ii) (iii) (iv) (v) (vi)
Option margin (1) 0.69∗∗∗ 0.76∗∗∗ 0.12 0.19
Option margin (2) 0.12 0.17∗ −0.10 −0.02
Option margin (3) −0.26∗∗∗ −0.22∗∗∗ −0.31∗∗∗ −0.21∗∗
Option margin (4) −0.59∗∗∗ −0.55∗∗∗ −0.42∗∗∗ −0.29∗∗∗
Option margin (5) −1.09∗∗∗ −1.04∗∗∗ −0.51∗∗∗ −0.36∗∗∗

Hedging capital (1) 1.00∗∗∗ 1.14∗∗∗ 1.03∗∗∗ 1.05∗∗∗
Hedging capital (2) −0.11 −0.14 0.21 0.07
Hedging capital (3) −0.78∗∗∗ −0.92∗∗∗ −0.21 −0.48∗∗
Hedging capital (4) −1.51∗∗∗ −1.74∗∗∗ −0.84∗∗∗ −1.23∗∗∗
Hedging capital (5) −2.87∗∗∗ −3.22∗∗∗ −2.01∗∗∗ −2.53∗∗∗

Log(open interest) −0.20∗∗∗ −0.22∗∗∗ −0.21∗∗∗
Delta 3.31∗ 3.63∗ 3.19∗
Time to maturity 0.01∗∗ 0.00 0.00
Gamma 2.54 10.35∗∗ 4.98
Vega 0.04∗∗∗ 0.06∗∗∗ 0.03∗∗
Stock volatility −0.43∗∗∗ −1.14∗∗∗ −1.03∗∗∗
Systematic risk 0.94 0.47 0.18
Firm size 0.07 0.16 0.17
Firm leverage 0.49 1.06 0.93
Constant 0.03 2.14∗∗∗ −3.04 0.61 1.43∗∗∗ −0.02
Average R2 0.04 0.04 0.07 0.07 0.05 0.08

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Table A2: Fama-MacBeth regressions (Put options)

This table reports Fama-MacBeth regression results of monthly delta-hedged option returns,
based on the sample of all put options with an ex-ante delta of at most −0.2. Dependent
variables are the options’ margin and hedging capital requirements. We estimate segmented
regression coefficients based on expensiveness quintiles, which are formed at the beginning of
each month. Below, option margin (k) and hedging capital (k) refer to the respective margin
variable for options within the k-th expensiveness quintile. Control variables on the option
level are the relative bid-ask spread, the logarithm of the option’s open interest, delta, gamma,
vega, as well as time to maturity in days. In addition, we include a GARCH estimate of the
underlying stock’s historical volatility, its systematic risk proportion, as well as the firms’
size and balance sheet leverage. All coefficients are given in percent, significances are based
on Newey-West standard errors with 4 lags.

Model (i) (ii) (iii) (iv) (v) (vi)
Option margin (1) 1.46∗∗∗ 1.42∗∗∗ 0.49 −0.06
Option margin (2) 0.92∗∗∗ 0.73∗∗∗ 0.68 −0.04
Option margin (3) 0.39 0.17 0.31 −0.27
Option margin (4) −0.14 −0.38∗∗ 0.09 −0.41∗∗
Option margin (5) −1.54∗∗∗ −1.74∗∗∗ 0.07 −0.54∗∗

Hedging capital (1) 1.24∗∗∗ 1.19∗∗∗ 0.81∗∗∗ 1.30∗∗∗
Hedging capital (2) 0.74∗∗∗ 0.58∗∗∗ 0.18 0.66∗∗∗
Hedging capital (3) 0.31 0.10 0.07 0.39∗
Hedging capital (4) −0.15 −0.38∗∗ −0.22 0.02
Hedging capital (5) −1.39∗∗∗ −1.59∗∗∗ −1.46∗∗∗ −1.10∗∗∗

Log(open interest) −0.21∗∗∗ −0.20∗∗∗ −0.20∗∗∗
Delta 3.00∗ 3.35∗ 3.39∗
Time to maturity 0.00∗ 0.00∗ 0.01∗
Gamma −2.00 −2.08 −2.22
Vega −0.01 0.00 0.00
Stock volatility −0.38∗∗∗ −0.46∗∗∗ −0.44∗∗∗
Systematic risk 2.63∗∗∗ 2.51∗∗∗ 2.54∗∗∗
Firm size 0.26∗∗∗ 0.23∗∗∗ 0.22∗∗∗
Firm leverage 0.22 0.32 0.33
Constant 0.29 0.31 −3.32∗ −2.07 0.35 −2.19
Average R2 0.06 0.05 0.09 0.09 0.06 0.09

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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