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ABSTRACT	

We	 study	 the	 extent	 of	 cross‐asset	 learning	 in	 financial	 markets	 by	 examining	 spillover	

effects	around	mutual	 fund	fire	sales.	 	We	 find	that	 the	well‐documented	 impact‐reversal	

pattern	for	the	returns	of	fire	sale	stocks	(e.g.,	Coval	and	Stafford,	2007)	spills	over	onto	the	

stock	returns	of	economic	peers	with	a	magnitude	that	 is	around	one	fifth	of	 the	original	

effect.	These	spillovers	extend	to	liquidity	and	are	not	explained	by	common	funding	shocks	

or	the	hedging	activity	of	liquidity	providers.	We	conclude	that	they	represent	information	

spillovers	due	to	learning	from	prices,	thus	identifying	cross‐asset	learning	as	an	important	

driver	for	the	commonality	in	returns	and	liquidity.	
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Do	investors	learn	from	stock	prices,	and	do	they	try	to	extract	information	about	one	stock	

from	the	price	movements	of	other	stocks?	These	questions	are	important	as	they	pertain	to	

the	 information	 efficiency	 of	 stock	 prices	 as	 well	 as	 to	 the	 comovement	 in	 returns	 and	

liquidity.	They	also	relate	to	standard	theory,	most	of	which	assumes	rational	expectations,	

and	 builds	 on	 the	 premise	 that	 investors	 rationally	 condition	 their	 expectations	 on	 all	

relevant	price	 signals.1	However,	 learning	 from	prices	 is	unlikely	 to	be	perfect:	 given	 the	

sheer	 number	 of	 potentially	 relevant	 price	 signals,	 perfect	 learning	 from	 prices	 would	

amount	 to	 solving	 a	 tremendous	 filtering	 problem	 likely	 to	 overwhelm	 even	 the	 most	

sophisticated	investors.2	Moreover,	by	responding	to	price	signals,	 investors	are	bound	to	

make	mistakes:	occasionally,	an	investor	will	misinterpret	a	noise	shock	to	be	a	fundamental	

signal,	causing	her	to	wrongly	update	her	beliefs.	

In	this	paper,	we	study	whether	investors	learn	from	prices	of—and	thus	occasionally	from	

noise	 in—economically	related	peer	stocks.	Identifying	learning	from	prices	is	challenging	

because	 the	 econometrician	 does	 not	 observe	 all	 the	 information	 that	 reaches	 investors,	

whether	 it	 stems	 from	newswires,	 analyst	 reports,	 internet	 chat	 rooms	or	even	word‐of‐

mouth.	 For	 example,	 if	 two	 stocks	 fall	 at	 the	 same	 time,	 the	 econometrician	 cannot	 tell	

whether	 this	 happened	 because	 both	 stocks	 responded	 to	 some	 common	 (unobserved)	

signal,	or	because	investors	learnt	about	one	stock	from	the	price	of	the	other.	We	overcome	

                                                 

1 Rational learning from prices has been first	formalized	in	the	seminal	models	of	Grossman	(1976),	Hellwig	(1980),	Grossman	and	Stiglitz	
(1980),	and	Admati	(1985).	These	models	have	seen	hundreds,	if	not	thousands,	of	adaptations	over	time—commonly	referred	to	as	the	
noisy	rational	expectations	equilibrium	(NREE)	literature. 

2 Consistent with imperfect learning from prices, observed levels of trading activity suggest the presence of large disagreement among market 
participants; see, for instance, Harris and Raviv (1993), Kandel and Pearson (1995), and Hong and Stein (2007). 
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this	 problem	 by	 isolating	 stock	 price	 movements	 where	 it	 becomes	 clear	 ex	 post	 that	

investors	 have	 “made	 mistakes”	 and	 updated	 on	 noise.	 Specifically,	 we	 consider	 price	

movements	 that	 turn	out	 to	be	price	pressure	effects	 triggered	by	mutual	 fund	 fire	 sales	

(Coval	 and	 Stafford,	 2007),	 and	 which	 therefore	 revert	 over	 time—indicating	 that	 the	

fundamentals	of	affected	firms	have	remain	unchanged.	Hence,	there	is	no	fundamental	news	

that	can	explain	a	potential	spillover.3	

We	then	ask	whether	the	price	pressure	effects	for	these	fire	sale	stocks	spill	over	to	their	

close	economic	peers,	which	we	identify	from	the	text‐based	network	industry	classification	

(TNIC)	developed	by	Hoberg	and	Phillips	(2010a;	2015).	Indeed,	when	investors	learn	from	

prices	and	are	not	able	to	see	through	the	non‐fundamental	reason	of	the	price	drop	in	the	

fire	 sale	 stock, 4 	they	 should	 downgrade	 their	 expectations	 about	 its	 peers. 5 	Over	 time,	

investors	become	aware	of	the	mispricing	induced	by	the	fire	sale,	and	the	prices	of	both	

stocks	should	revert.	Hence,	we	expect	to	find	a	similar	impact‐reversal	pattern	for	the	peers	

of	 fire	 sale	 stocks.	Put	differently,	models	with	 rational	 learning	entail	 that,	 occasionally,	

investors	make	mistakes	and	update	on	noise.	We	argue	that,	due	to	the	omitted	variable	

                                                 

3 There is a large accounting literature documenting that stock prices respond to the arrival of public news about peer firms (e.g., Firth, 1976; Foster, 
1981; Ramnath, 2002; Thomas and Zhang, 2008; Brochet et al., 2016). While showing that investors learn across stocks, these papers cannot 
distinguish between learning from news and learning from prices. 

4 Given that fund flow and holdings data comes online with a reporting lag of up to two quarters (e.g., Coval and Stafford, 2007; Frazzini and 
Lamont, 2008), most investors are only able to observe the fire sale with a delay. Indeed, if this were not the case, one would expect more liquidity 
providers to enter so that the price drop upon the fire sale would be significantly reduced in the first place.    

5 We expect a downgrade if negative news for one firm constitutes negative news for the other firm. For firms competing in the same product 
market (which will be affected by the same demand shocks), this should be true on average. Below, we also present cross-sectional results in which 
we differentiate between peers for which this is more or less likely to be the case. 
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problem	described	above,	it	is	exactly	in	this	case	that	we	can	hope	to	identify	learning	from	

prices.	

Figure	2	illustrates	the	main	finding	of	our	paper:	the	impact‐reversal	patterns	from	fire	sales	

spill	over	to	peer	firms	that	do	not	experience	fire	sales	themselves.	In	the	quarter	where	a	

mutual	fund	fire	sale	hits	a	firm	(Panel	A),	its	economic	peers	experience	a	stock	price	drop	

that	is	approximately	one	fifth	of	the	fire	sale	effect	(Panel	B).	Both	the	fire	sale	and	the	peer	

effect	reverse	over	subsequent	quarters,	confirming	the	non‐fundamental	nature	of	the	fire	

sale	 shocks.	 We	 consider	 several	 explanations	 for	 these	 findings—including	 common	

funding	 shocks,	 reverse	 causality	 and	 cross‐asset	 hedging	 by	 liquidity‐providing	

arbitrageurs—and	 conclude	 that	 they	 are	 most	 consistent	 with	 the	 “learning	 channel”	

posited	by	multi‐asset	rational	expectation	models.	Consistent	with	this	interpretation,	we	

find	that	the	price	spillover	effect	is	stronger	when	cross‐asset	learning	is	more	important	

—i.e.,	when	public	information	about	peer	stocks	is	scarce	(e.g.,	small	firms,	firms	with	low	

analyst	coverage,	or	high	analyst	forecast	errors),	when	peer	stocks	exhibit	a	high	turnover‐

volatility	correlation	(a	model‐implied	measure	of	the	extent	to	which	investors	condition	

on	prices;	see	Banerjee,	2011)	and	for	peers	that	are	more	closely	related	to	the	fire	sale	firm.			

One	crucial	element	for	the	learning	story	is	the	lack	of	public	information	regarding	the	non‐

fundamental	nature	of	 the	 fire	sale	stock.	This	observation	 leads	us	 to	conduct	a	placebo	

experiment	by	testing	for	spillover	effects	of	another	well‐known	price	pressure	effect	for	

which	 such	 information	 is	 available—S&P	 500	 index	 additions	 (Harris	 and	 Gurel,	 1986;	

Shleifer,	 1986;	 Beneish	 and	 Whaley,	 1996;	 Lynch	 and	 Mendenhall,	 1997).	 Though	 the	

literature	does	not	quite	agree	on	whether	the	run‐up	in	prices	of	newly	added	stocks	reflects	
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pure	price	pressure	or	also	direct	benefits	of	the	index	inclusion	(such	as	increased	investor	

awareness;	see,	e.g.,	Wurgler	and	Zhuravskaya,	2002;	Denis	et	al.,	2003;	Chen	et	al.,	2004;	

Patel	and	Welch,	2016),	the	fact	that	additions	are	publicly	observed	means	there	should	be	

less	uncertainty	about	the	value	implications	for	peer	stocks.	We	indeed	find	that	the	peers	

of	added	stocks	exhibit	an	economically	weaker	and	mostly	insignificant	spillover	effect.	This	

confirms	that	the	lack	of	public	information	surrounding	fire	sales	is	key	to	understanding	

the	return	spillover	effect	that	we	document.		

Finally,	we	test	whether,	in	addition	to	the	price	spillover,	there	is	also	evidence	of	a	liquidity	

spillover	from	fire	sale	stocks	to	their	peers.	Indeed,	we	clarify	with	a	standard	NREE	model	

based	on	Admati	(1985)	that	such	a	liquidity	spillover	is	a	unique	prediction	of	the	cross‐

asset	learning	channel.	The	intuition	is	that	the	fire	sale,	by	reducing	the	informativeness	of	

the	price	signal,	increases	the	uncertainty	about	peer	firms,	making	investors	more	reluctant	

to	provide	 liquidity.	Consistent	with	this	 intuition,	we	document	that	 fire	sale	firms	see	a	

strong	dry‐up	in	liquidity,	which	similarly	spills	over	to	peer	firms.		

Our	 identification	 rests	 on	 the	 assumption	 that	mutual	 fund	 fire	 sales	 are	 exogenous	 to	

affected	stocks.	While	ours	is	not	the	only	paper	making	this	assumption,	we	acknowledge	

that	 the	 endogeneity	 of	 fire	 sales	 is	 of	 particular	 concern	 in	 the	 context	 of	 identifying	

spillover	effects.	To	be	precise,	there	are	two	layers	of	endogeneity.	First,	distressed	funds	

may	selectively	sell	stocks	about	which	they	have	negative	 information	(see	Huang	et	al.,	

2016).	To	 the	extent	 that	 this	 information	 also	pertains	 to	 industry	peers,	we	may	 see	 a	

simultaneous	price	drop	for	fire	sale	stocks	and	their	peers.	Second,	we	may	face	a	reverse	

causality	 when	 industry	 distress	 triggers	 outflows	 from	 funds	 heavily	 invested	 in	 that	
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industry.	To	immunize	our	approach	against	the	first	concern,	we	follow	Edmans	et	al.	(2012)	

and	 identify	 fire	 sales	 based	 on	 “hypothetical	 sales”	 imputed	 from	 a	 proportional	

downscaling	of	a	fund’s	previous	portfolio	holdings	(rather	than	using	their	actual	sales).6	

To	deal	with	the	second	concern,	we	verify	in	numerous	robustness	checks	that	our	results	

are	not	driven	by	broad	industry	trends	or	funds	whose	outflows	are	likely	to	be	caused	by	

industry	distress.	As	we	discuss	 in	detail	 below,	 the	observed	 return	 reversal	within	1‐2	

years	is	further	evidence	against	the	reverse	causality	argument	as	industry	cycles	evolve	at	

a	more	glacial	pace	(Hoberg	and	Phillips,	2010b).				 

Our	paper	contributes	 to	 several	 strands	of	 research.	First,	we	speak	 to	 the	 literature	on	

comovement	and	spillovers	in	asset	markets.	There	is	strong	evidence	for	commonality	in	

returns	and	liquidity	(Pindyck	and	Rotemberg,	1993;	Chordia	et	al.,	2000;	Hartford	and	Kaul,	

2005;	Hasbrouck	and	Seppi,	2001;	Korajczyk	and	Sadka,	2008).	Since	these	comovements	

seem	 excessive	 relative	 to	 the	 comovement	 in	 fundamentals,	 subsequent	 research	 has	

explored	both	behavioral	explanations	(Lee	et	al.,	1991;	Bodurtha	et	al,	1995;	Barberis	and	

Shleifer,	2003;	Barberis	et	al.,	2005)	and	financial	friction‐based	explanations	(Greenwood,	

2005;	Andrade	et	al.,	2008;	Greenwood	and	Thesmar,	2011;	Anton	and	Polk,	2014;	Koch	et	

al.,	2016).	Another,	more	closely	related	branch	of	the	literature	focuses	on	informed	order	

flow	as	a	source	of	return	comovement	(Boulatov	et	al.,	2013;	Pasquariello	and	Vega,	2015).	

While	 these	 papers	 make	 inroads	 into	 establishing	 cross‐asset	 information	 flows	 as	 an	

                                                 

6 In Internet Appendix B.3, we present evidence supporting the view that the fire sale events based on the Edmans et al. (2012) approach are indeed 
immune to stock selection concerns. Specifically, we show that abnormal short interest, which Huang et al. (2016) find to have strong predictive 
power for whether actual fire sale exhibit a reversal or not, does not have any bite in our context. That is, fire sales identified as in Edmans et al. 
(2012) exhibit a similarly strong price drop and reversal regardless of whether short interest is high or low.  
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important	driver	of	comovement,	they	are	unable	to	control	for	all	information	arrivals	that	

may	 explain	 the	 joint	 dynamics	 in	 order	 flow	 and	 returns.	 	 As	 such,	 there	 remains	 the	

possibility	that	returns	comove	not	because	investors	learn	from	order	flow,	but	because	of	

information	shocks	that	drive	both	returns	and	order	flows.	We	sidestep	this	problem	by	

considering	fire	sales	as	a	quasi‐natural	experiment	to	cleanly	identify	learning	from	prices	

across	stocks.	In	doing	so,	we	document	that	investors	occasionally	update	on	noise,	thereby	

identifying	a	learning‐based	spillover	mechanism	that	contributes	to	the	rich	co‐variation	in	

returns	and	liquidity.7	

Second,	we	add	to	the	literature	on	learning	in	financial	markets.	While	there	is	a	large	body	

of	theory	on	information	asymmetry	and	learning	from	prices	(e.g.,	Hellwig,	1980;	Grossman	

and	Stiglitz,	1980;	Wang,	1993),	 clean	empirical	 tests	of	primitive	predictions	 from	these	

models	remain	rare,	because	investors’	information	sets	are	difficult	to	observe	and	highly	

endogenous.	One	exception	is	Kelly	and	Ljungqvist	(2012)	who	exploit	exogenous	variation	

in	analyst	coverage	to	study	how	shocks	to	information	asymmetry	affect	firm	valuations.	

Another,	more	closely	related	paper	is	Banerjee	(2011)	who	solves	a	dynamic	noisy	rational	

expectations	model	to	derive	predictions	about	investors’	use	of	information	contained	in	

prices,	which	he	then	goes	on	to	test	in	the	data.	While	the	evidence	is	more	consistent	with	

learning	from	prices,	his	approach	is	based	on	studying	correlations	and	does	not	consider	

learning	across	stocks.		We	contribute	by	applying	an	empirical	design	that	allows	to	identify	

                                                 

7 These findings further relate to an old	literature	showing	that	firm‐specific	or	market‐wide	news	explain	a	surprisingly	low	fraction	of	the	
variation	in	stock	returns	(Roll,	1988;	Cutler	et	al.,	1989;	see	Boudoukh et al., 2015,	for	a	more	recent	analysis).	Our	results	suggest	a	new	
way	for	understanding	this	apparent	puzzle.	Specifically,	we	document	how	cross‐asset	learning	leads	to	the	propagation	of	noise	shocks	
among	economically‐related	stocks.	
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whether	and	how	much	investors	learn	from	the	stock	prices	of	peer	firms.	This	enables	us	

to	directly	confirm	a	basic	assumption	from	rational	expectation	models	with	multiple	price	

signals	(Admati,	1985;	Caballé	and	Krishnan,	1994;	Kodres	and	Pritsker,	2002;	Veldkamp	

2006;	Bernardt	and	Taub,	2008).	Our	results	also	complement	the	evidence	in	Cohen	and	

Frazzini	(2008)	and	Menzly	and	Ozbas	(2010):	while	their	results	show	that	investors	learn	

too	 little	across	stocks,	ours	 imply	 that	 they	sometimes	 “learn	 too	much”	by	updating	on	

noise.			

Third,	we	contribute	to	the	literature	on	mutual	fund	trading	pressure.	Coval	and	Stafford	

(2007)	show	that	the	trading	behavior	of	mutual	funds	with	extreme	outflows	lead	to	price	

pressure	 effects	 for	 affected	 stocks. 8 	Since	 mutual	 fund	 flows	 can	 be	 treated	 as	 largely	

exogenous	from	the	perspective	of	affected	stocks,9	subsequent	research	has	exploited	fire	

sales	to	shed	light	on	the	real	effects	of	stock	price	changes	on	corporate	outcomes	such	as	

takeover	activity	(Edmans	et	al.,	2012),	 investment	and	employment	(Hau	and	Lai,	2013),	

opportunistic	 option	 grant	 timing	 and	 insider	 purchases	 (Ali	 et	 al.,	 2011),	 and	 seasoned	

equity	offerings	(Khan	et	al.,	2012).10	Related	to	our	work,	Dessaint	et	al.	(2016)	show	that	

peer	firms	of	fire	sale	stocks	cut	investment,	consistent	with	these	managers	learning	from	

                                                 

8 In	the	international	context,	Jotikasthira	et	al.	(2012)	find	that	flow	shocks	to	funds	domiciled	in	developed	markets	affect	their	asset	
allocations	abroad	and	thereby	transmit	to	emerging	markets.	Falato	et	al.	(2016)	provide	evidence	for	fire	sale	spillovers	in	fixed	income	
markets.		

9 This identifying assumption is supported by the fact that the price pressure effect reverses over subsequent quarters, proving that the fundamentals 
of affected stocks are unchanged on average. See the robustness section for more discussion on this point. 

10 The evidence on option grant timing, insider trading and SEOs suggests that at least some managers of fire sale firms are aware of the temporary 
mispricing induced by the fire sale. This finding is in line with the vast literature on the market timing ability of firm managers (e.g., Baker and 
Wurgler, 2002).  
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stock	prices	but	 failing	to	filter	out	the	noise	 induced	by	 fund	selling	pressure.	 Instead	of	

looking	at	corporate	outcomes,	we	study	price	and	liquidity	spillovers	between	fire	sale	stocks	

and	 their	 economic	 peers.	 	 In	 our	 view,	 documenting	 these	 spillovers	 is	 important	 as	 it	

provides	 clean	 evidence	 for	 the	 importance	 of	 the	 learning	 channel—the	 bedrock	 of	 the	

rational	expectations	literature—in	driving	the	commonality	in	returns	and	liquidity.		

The	remainder	of	this	paper	is	organized	as	follows.	Section	I	lays	out	the	hypotheses	tested	

in	this	paper.	Section	II	describes	the	data	and	methodology.	Section	III	presents	the	main	

results	on	return	spillovers,	including	a	cross‐sectional	analysis	and	numerous	robustness	

checks.	Section	IV	provides	additional	evidence	in	favor	of	the	cross‐asset	learning	channel.	

Section	V	concludes.	

I. Hypotheses	

A. Cross‐asset	Learning	

We	draw	on	multi‐asset	models	with	learning	from	prices	to	develop	our	predictions	about	

the	informational	spillover	effects	of	mutual	fund	fire	sales.	These	predictions	are	derived	in	

Internet	Appendix	A	using	a	standard	NREE	model	in	the	spirit	of	Admati	(1985);	here	we	

focus	on	providing	their	intuitions.	The	first	prediction	concerns	a	price	spillover	effect:	under	

asymmetric	 information,	 the	 price	 of	 the	 fire	 sale	 stock	 serves	 as	 a	 signal	 about	

fundamentally‐related	 peer	 firms.	 Rational	 learning	 then	 entails	 that,	 unless	 investors	

perfectly	understand	that	a	price	drop	in	the	fire	sale	stock	is	caused	by	noise,	they	interpret	

the	 price	 drop	 as	 representing	 bad	 news	 for	 peer	 stocks,	 causing	 peers’	 stock	 prices	 to	

weaken	as	well.	 In	 terms	of	 the	model,	 the	 fire	 sale	 represents	 an	unobserved	 (positive)	

shock	to	the	supply	of	one	stock,	which	pushes	down	the	equilibrium	price	of	both	the	fire	
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sale	stock	and	its	peer.	Over	time,	investors	figure	out	that	the	reason	for	the	price	drop	was	

non‐fundamental	and	prices	revert.	Hence,	models	with	cross‐asset	learning	(e.g.,	Admati,	

1985;	Caballé	and	Krishnan,	1994;	Veldkamp	2006;	Boulatov	et	al.,	2013;	Pasquariello	and	

Vega,	2015;	Cespa	and	Foucault,	2014;	Asriyan	et	al.,	2016)	unequivocally	predict	that	the	

impact‐reversal	 pattern	 observed	 for	 fire	 sale	 firms	 should	 spill	 over	 to	 peer	 firms.	

Intuitively,	 such	 a	 spillover	 should	 be	 stronger	 for	 stocks	 for	which	 the	 available	 public	

information	is	scarce	because	then	investors	need	to	rely	more	on	the	stock	price	signals	of	

economic	peers.		

The	 second	 prediction	 is	 about	 a	 liquidity	 spillover	 effect,	 and	 arises	 when	 the	 fire	 sale	

impairs	the	price	informativeness	of	the	fire	sale	stock.11		In	the	model,	this	can	be	seen	by	

assuming	that	a	fire	sale,	in	addition	to	being	a	large	supply	shock	realization,	also	causes	an	

increase	in	the	standard	deviation	of	expected	supply	shocks.	Such	an	increase	reduces	the	

signal‐to‐noise	ratio	in	the	fire	sale	price	and	thereby	raises	the	overall	uncertainty	faced	by	

market	 participants,	 causing	 them	 to	withdraw	 their	 liquidity	 from	 economically‐related	

peer	firms.	Thus,	we	expect	peer	firms	to	suffer	from	a	temporary	deterioration	in	liquidity	

around	the	fire	sale.	To	sum	up,	we	expect	cross‐asset	learning	to	lead	to	price	and	liquidity	

                                                 

11 There are at least three reasons for why a fire sale may reduce the price informativeness of the fire sale stock: First, even in the absence of 
adverse selection (as in Cespa and Foucault, 2014), an extreme noise realization in one period may cause risk-averse market makers to update their 
expectations about future noise trader risk, to which they respond by decreasing liquidity, thereby rendering the price less informative. Second, 
when market makers are uncertain whether informed traders are present, a large unexpected trade (as from a fire sale) may cause them to update 
this probability, leading them to demand a higher price impact (e.g., Easley and O’Hara, 1992; Avery and Zemsky, 1998; Banerjee and Green, 
2015). Third, fire sale shocks may hurt informed arbitrageurs, causing them to trade less aggressively in the fire sale stock and thereby rendering 
its price less informationally-efficient (Dow and Han, 2016). 
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spillovers	between	fire	sale	stocks	and	their	economic	peers.	We	call	 this	the	 information	

spillover	hypothesis.	

B. Alternative	Spillover	Channels		

Clearly,	there	are	alternative	explanations	for	the	existence	of	spillover	effects.	For	instance,	

spillover	effects	between	two	assets	can	be	triggered	by	financially‐constrained	arbitrageurs	

that	are	trading	in	both	(Kyle	and	Xiong,	2001;	Gromb	and	Vayanos,	2002;	Brunnermeier	and	

Perdersen,	 2009).	 As	 these	 traders	 suffer	 losses	 in	 one	 asset,	 they	 may	 be	 forced	 (e.g.,	

because	of	margin	calls)	to	exit	their	positions	in	the	other	asset.	Such	a	contagion	effect	fits	

well	with	anecdotal	evidence	from	prominent	fire	sale	crises	such	as	the	collapse	of	the	hedge	

fund	LTCM	in	1998.	It	is	also	consistent	with	empirical	evidence	that	stocks	with	common	

owners	(Anton	and	Polk,	2014)	or	different	owners	with	common	shocks	(Greenwood	and	

Thesmar,	2011)	exhibit	comovement	over	and	above	what	can	be	explained	by	fundamentals.	

This	funding	shock	channel	could	presumably	also	explain	a	joint	liquidity	dry‐up,	although	

it	has	a	harder	time	to	rationalize	why	stocks	in	a	weaker	information	environment	would	

systematically	be	more	affected	than	those	with	stronger	public	information.	To	address	the	

possibility	that	return	spillovers	are	explained	by	common	funding	shocks,	we	control	for	a	

rich	set	of	proxies	intended	to	capture	common	ownership	and	common	flow	shocks.12	

Another	 explanation	 for	 a	 spillover‐like	 return	 pattern	 concerns	 the	 activity	 of	 liquidity‐

providing	arbitrageurs.	Such	arbitrageurs	buy	shares	from	distressed	sellers	and	hedge	their	

                                                 

12 These controls also help to counter the empirical concern that	the	peer	effect	could	be	driven	by	small‐scale	fire	sales	in	disguise. 
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positions	by	selling	peer	stocks.13	If	they	do	so	in	droves	and	demand	curves	are	downward‐

sloping,	 peer	 stocks	 could	 see	 a	 somewhat	 smaller	 price	 pressure	 effect	 themselves	

(Greenwood,	2005;	Andrade	et	al.,	2008;	Lou	et	al.,	2013).	Such	an	effect	naturally	arises	in	

models	featuring	risk‐averse	investors	that	trade	correlated	assets	in	equilibrium	(and	it	is	

also	present	in	our	model;	see	Internet	Appendix	A).	We	deal	with	this	cross‐asset	hedging	

channel	in	several	ways.	First,	we	construct	a	proxy	for	the	intensity	of	cross‐asset	hedging	

that	we	use	as	a	control	in	our	empirical	tests.	Second,	we	note	(and	show	in	our	model)	that	

this	 explanation	 is	 inconsistent	with	 the	 presence	 of	 a	 liquidity	 spillover	 effect	 (see	 also	

Cespa	 and	 Foucault,	 2014)	 and	 does	 not	 predict	 cross‐sectional	 differences	 in	 return	

spillovers	across	peers	(assuming	they	are	equally	good	for	hedging).	Finally,	we	conduct	a	

placebo	 experiment	 by	 looking	 at	 another	 instance	 of	 price	 pressure—S&P	 500	 index	

addition	events—for	which	there	should	be	little	uncertainty	about	the	value	implications	

for	 peer	 firms.	Hence,	 any	 spillover	 that	we	document	 in	 this	 context	 cannot	 come	 from	

learning	and—by	comparing	it	to	the	spillover	intensity	in	fire	sales—allows	us	to	assess	the	

relative	importance	of	cross‐asset	learning	vis‐à‐vis	cross‐asset	hedging.	

Empirically,	one	key	challenge	is	to	distinguish	spillover	effects—where	movements	in	one	

stock	cause	movements	in	another—from	comovement	driven	by	other	unobserved	factors	

like	common	economic	trends.	We	argue	that	we	can	overcome	this	challenge	by	studying	

spillovers	 triggered	by	 idiosyncratic	 fire	 sale	 shocks.	One	 important	concern,	however,	 is	

                                                 

13 Another possibility is front-running: when some arbitrageurs anticipate the fire sale, they can short-sell the fire sale stock and cover their shorts 
by buying from distressed funds (indirect evidence for front-running by hedge funds is documented in Chen et al., 2008). When arbitrageurs 
engaging in front-running want to hedge their positions, they may similarly sell peer stocks at the time of the fire sale. 
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reverse	 causality:	 it	 may	 be	 that	 fire	 sales,	 rather	 than	 causing	 spillover	 effects,	 are	

themselves	 caused	 by	 industry	 distress	 and	 the	 simultaneous	 stock	 price	 decline	 among	

industry	 stocks.	 	 While	 we	 defer	 a	 detailed	 discussion	 of	 this	 potential	 concern	 to	 the	

robustness	section,	we	note	here	that	 the	reverse	causality	story	does	not	predict	a	swift	

return	reversal	as	industry	distress	should	arguably	persist	over	several	quarters	if	not	years	

(e.g.,	Hoberg	and	Phillips,	2010b).		

II. Data	and	Methodology	

Stock	market	data	is	obtained	from	CRSP;	mutual	fund	returns	and	monthly	total	net	asset	

(TNA)	values	come	from	the	CRSP	mutual	fund	database;	and	quarterly	mutual	fund	holdings	

are	gathered	from	the	Thomson	Reuters	S12	holdings	data.	We	start	from	the	sample	of	all	

common	stocks	(share	codes	10	or	11)	with	an	end‐of‐quarter	price	above	one	dollar	and	at	

least	10	non‐missing	daily	returns	in	a	quarter.	For	each	stock,	we	calculate	a	measure	of	

hypothetical	 selling	 pressure	 by	 “fire	 sale	 funds”	 as	 in	 Edmans	 et	 al.	 (2012).	 A	 detailed	

description	of	the	construction	of	their	measure	is	provided	in	Appendix	B.	Here,	we	only	

provide	its	intuition.	Following	their	example,	we	exclude	sector	funds	(third	letter	of	CRSP	

objective	 code	 equal	 to	 “S”)—as	 they	 could	 suffer	 from	 reverse	 causality—and	 drop	 all	

international,	municipal,	bond	and	metal	funds	(investment	objective	codes	1,	5,	6,	8).	For	

each	fire	sale	fund,	defined	as	a	mutual	fund	with	quarterly	outflows	exceeding	5%	of	TNA,	

we	calculate	the	imputed	dollar	selling	volume	for	each	portfolio	stock	if	the	fund	had	just	

downscaled	his	pre‐existing	portfolio.	We	then	aggregate	the	imputed	selling	pressure	of	all	

fire	sale	funds	at	the	stock	level,	scale	by	total	trading	volume,	and	call	this	variable	mfflow.	
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Following	Edmans	et	al.	(2012),	we	say	that	a	fire	sale	event	(defined	at	the	stock‐quarter	

level)	occurs	when	mfflow	is	in	the	lowest	decile.		

It	is	important	to	note	that	this	approach	shuts	down	endogeneity	concerns	coming	from	the	

choice	of	stocks	being	sold.	Indeed,	distressed	mutual	funds	may	actively	sell	the	stocks	that	

they	 are	 the	 least	 optimistic	 about—implying	 that	 their	 actual	 sell	 decisions	 contain	

information.	The	use	of	imputed	sells	circumvents	this	issue	as	imputed	sells	by	construction	

do	not	reflect	an	active	choice	by	the	fund	manager.	In	Internet	Appendix	B.3,	we	present	

evidence	consistent	with	this	conclusion.	Specifically,	we	show	there	that	a	stock’s	abnormal	

short	interest,	which	Huang	et	al.	(2016)	find	to	predict	whether	a	stock	actually	sold	in	a	

fire	sale	exhibits	a	price	reversal	or	not,	does	not	have	any	predictive	power	with	the	Edmans	

et	al.	(2012)	methodology.	

We	identify	the	economic	peers	of	fire	sale	stocks	using	the	Text‐based	Network	Industry	

Classification	(TNIC)	developed	by	Hoberg	and	Phillips	(2010a;	2015).	This	data	covers	the	

period	 from	 1996	 to	 2013	 and	 is	 based	 on	 a	 textual	 analysis	 of	 the	 product	 description	

section	 contained	 in	 annual	 10‐K	 reports	 that	must	be	 filed	with	 the	SEC.	For	 each	year,	

Hoberg	and	Philips	 (2015)	compute	 firm‐by‐firm	pairwise	similarity	 scores	based	on	 the	

number	of	words	that	two	firms	share	in	their	product	market	descriptions.	They	then	define	

two	firms	to	be	economic	peers	if	their	similarity	score	exceeds	a	pre‐specified	minimum	

threshold.	 Compared	 to	 standard	 industry	 classifications	 (such	 as	 SIC	 and	 NAICS),	 TNIC	
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offers	a	finer	and	arguably	more	accurate	description	of	peer	firm	relatedness.14	This	turns	

out	to	be	important	for	our	analysis—indeed,	we	confirm	below	that	the	spillovers	to	TNIC	

peers	obtain	even	after	controlling	for	common	industry	trends	(see	subsection	III.C).		

To	ensure	that	any	spillover	effect	we	document	is	not	confounded	by	another	fire	sale	event,	

we	 do	 not	 consider	 a	 peer	when	 it	 has	 itself	 experienced	 a	 fire	 sale	 in	 the	 preceding	 or	

succeeding	8	quarters.	In	addition,	we	focus	on	the	10	closest	economic	peers	(based	on	the	

product	similarity	score)	for	each	fire	sale	event	as	we	expect	cross‐asset	learning	and	thus	

potential	spillovers	to	be	the	strongest	for	those	firms.15		

Fire	sale	events	tend	to	cluster.	For	example,	conditional	on	having	a	fire	sale,	a	firm	has	a	

61%	(69%)	probability	of	experiencing	another	fire	sale	over	the	subsequent	four	(eight)	

quarters,	 while	 unconditionally	 the	 probability	 of	 having	 a	 fire	 sale	 over	 a	 four	 (eight)	

quarter	period	is	only	21%	(30%).	To	deal	with	this	clustering	of	fire	sale	events,	we	conduct	

a	multivariate	 panel	 analysis	 that	 allows	 to	 isolate	 the	 return	 effects	 of	 overlapping	 fire	

sales.16	Specifically,	we	run	regressions	of	the	following	type:		

                                                 

14 In addition to being finer, TNIC data has three important features that make it more accurate than standard industry classifications: First, TNIC 
peer definitions are time-varying and can thus account for changes to the industry landscape. Second, by basing the classification on product 
descriptions (rather than, say, production processes), TNIC may be better able to capture product market competition where firms are exposed to 
common demand shocks. Finally, TNIC peer definitions are not forced to be transitive, meaning that each firm can have a different set of peers. 

15 We still find a statistically significant (albeit slightly weaker) spillover effect for returns when we include all peers (instead of only the top 10). 
This is not surprising as the majority of fire sale stocks has no more than a dozen of associated peer stocks. We nonetheless prefer to include this 
filter so as to not give a disproportionate weight to a small number of fire sale firms that are linked with hundreds of peer firms.    

16 In Internet Appendix B.1, we also report results from a classic event study approach. These results also exhibit an impact-reversal pattern for 
peer firms, but due to event clustering there is more pre-event drift and the reversal is more protracted.  
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ଵ଺

ఛୀିଵ଺

൅ ෍ ఛߜ ൈ ௜௧ିఛܴܧܧܲ

ଵ଺

ఛୀିଵ଺

൅ ᇱߛ ௜ܺ௧ିଵ ൅ 	௜௧ߝ (1)

where	ݕ௜௧ 	is	 a	dependent	variable	of	 interest,	ߙ௜ 	and	ߙ௧	are	 firm	and	quarter	 fixed	effects,	

ܨ ௜ܵ௧ିఛ	and	ܴܲܧܧ௜௧ିఛ	are	a	set	of	dummy	variables	that	flag	fire	sale	firms	and	their	peers	in	

event	time,	and	 ௜ܺ௧ିଵ	is	a	vector	of	pre‐specified	control	variables.	To	see	how	this	works,	

consider	 the	 case	where	 firm	A	has	 a	 fire	 sale	 in	 the	 first	quarter	of	2008,	 implying	 that	

ܨ ஺ܵଶ଴଴଼ொଵ ൌ 1.	If	firm	B	is	a	peer	to	fire	sale	stock	A	(and	does	not	have	a	fire	sale	itself),	then	

஻ଶ଴଴଼ொଵܴܧܧܲ ൌ 1.	The	specification	further	includes	32	dummies	that	flag	the	16	preceding	

and	succeeding	quarters	for	the	two	event	firms.	For	example,	the	dummies	ܨ ஺ܵଶ଴଴଼ொଵିଵ	and	

	.respectively	B,	and	A	firm	for	2007	of	quarter	fourth	the	in	one	value	the	take	஻ଶ଴଴଼ொଵିଵܴܧܧܲ

Importantly,	if	firm	A	had	another	fire	sale	in,	say,	the	first	quarter	of	2007,	then	ܨ ஺ܵଶ଴଴଼ொଵ	

and	 ܨ ஺ܵଶ଴଴଻ொଵାସ 	would	 be	 one	 at	 the	 same	 time,	 ensuring	 that	 any	 reversal	 from	 the	

preceding	fire	sale	does	not	confound	the	estimation	of	the	second	fire	sale	effect.	In	this	way,	

our	panel	specification	allows	us	to	isolate	the	evolution	in	ݕ௜௧	for	fire	sale	and	peer	events	

in	event‐time.	Standard	errors	are	double‐clustered	at	the	firm	and	quarter	level.		

For	 our	multivariate	 analyses,	we	 gather	 a	 host	 of	 firm‐specific	 control	 variables	 from	 a	

variety	of	sources:	accounting	data	comes	from	Compustat;	the	number	of	analysts	following	

a	stock	is	taken	from	I/B/E/S;	institutional	holdings	data	are	from	CDS	Spectrum	(S34);	and	

quarterly	measures	 of	 the	 probability	 of	 informed	 trading	 (PIN;	 Easley	 et	 al.,	 1996)	 are	
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downloaded	from	Professor	Stephen	Brown’s	website.17	Table	I	reports	descriptive	statistics	

and	Appendix	A	provides	detailed	variable	descriptions	for	the	control	variables	used	in	this	

study.	Our	final	dataset	spans	the	period	from	1996	to	2013	and	includes	31,403	fire	sale	

events	as	well	as	66,696	associated	peer	events.	Figure	1	shows	how	these	events	spread	out	

over	time.	While	the	number	of	events	fluctuates	quite	a	bit,	there	is	no	apparent	trend	or	an	

indication	that	events	are	concentrated	in	one	particular	period.		

[Include	Table	I	about	here.]		

III. Return	Spillover	

A. Baseline	Results	

In	this	section,	we	study	the	effect	of	fire	sales	on	the	stock	returns	of	their	peers.	Specifically,	

Table	II	shows	the	results	from	estimating	equation	(1)	for	the	cumulated	quarterly	return	

as	 the	dependent	variable.	 For	 each	 specification,	we	show	 fire	 sale	and	peer	 event‐time	

dummies	next	to	each	other	to	facilitate	the	comparison.18	First,	we	note	that	the	fire	sale	

dummies	display	the	typical	impact‐reversal	pattern.	In	the	fire	sale	quarter,	affected	stocks	

shed	7‐8%	of	 their	value,	which	they	partly	recover	over	 the	subsequent	8	quarters.	The	

magnitude	of	this	effect	is	close	to	what	has	been	found	in	the	literature	(Coval	and	Stafford,	

2007;	 Edmans	 et	 al.,	 2012;	Dessaint	 et	 al.,	 2016).	 It	 is	 also	 remarkably	 consistent	 across	

different	 specifications,	 showing	 that	 the	 results	 obtain	 after	 controlling	 for	 a	 host	 of	

accounting	 variables	 (column	 2),	 ownership	 measures	 (column	 3),	 fund	 flow	 proxies	

                                                 

17 Available at: http://scholar.rhsmith.umd.edu/sbrown/pin-data. These PIN measures are estimated using the Venter and de Jongh (2004) model. 

18 For brevity, we only report results for event-time dummies െ2 ൑ ߬ ൑ 8. The other event-time dummies are mostly insignificant.  
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(column	 4),	 or	 all	 of	 these	 combined	 (column	 6).	 The	 key	 result	 of	 this	 table	 is	 that	 the	

dummy	for	peer	firms	in	the	event	quarter	(t	=	0)	indicates	a	drop	in	returns	of	about	1.5%.	

This	 amounts	 to	 approximately	one	 fifth	of	 the	original	 fire	 sale	effect	 (e.g.,	 in	 column	1,	

~1.5%/7.5%),	which	 is	 a	 reasonable	magnitude	 for	 a	 spillover	 effect.19	Like	 the	 fire	 sale	

effect,	 this	 drop	 in	 peer	 returns	 remains	 stable	 and	 highly	 statistically	 significant	 across	

specifications.	We	 further	 find	 that	 this	 return	 spillover	 completely	 reverses	within	 four	

quarters.	20	For	example,	in	column	1,	the	cumulated	reversal	over	four	quarters	equals	1.6%	

and	is	significant	at	the	5%‐level.	The	existence	of	the	reversal	confirms	that	the	stock	price	

drop	for	peer	firms	is	not	caused	by	fundamental	news.	Rather,	 it	suggests	 that	 investors	

become	aware	of	the	non‐fundamental	reason	for	the	price	drop	in	the	fire	sale	stock	and	

reevaluate	their	initial	negative	assessment	for	peer	firms.		

[Include	Table	II	about	here.]	

We	 emphasize	 that	 the	 return	 spillover	 effect	 obtains	 after	 controlling	 for	 an	 array	 of	

potentially	confounding	factors.	The	inclusion	of	firm	and	quarter	fixed	effects,	for	instance,	

ensures	that	our	results	are	not	driven	by	unobserved	(fixed)	firm	characteristics	or	market‐

                                                 

19 When observing a drop in the stock price of a peer firm, investors will not be sure whether this price drop reflects fundamentals or noise. For 
mixed prior beliefs about the unconditional probabilities of fundamental and non-fundamental shocks, it is natural to expect an update which is a 
fraction of the original price shock. 

20 Interestingly, the reversal for peer firms occurs somewhat faster than the reversal for fire sale stocks, as the latter have not fully reversed after 
even 8 quarters. While explaining the slow reversal for fire sale firms is outside the scope of this paper, we note that our finding that the peer effect 
reverts faster is consistent with recent explanations that focus on the role of adverse selection risk surrounding fire sales (Dow and Han, 2016; 
Huang et al., 2016). According to this argument, there is substantial uncertainty about which stocks are sold by fire sale funds: on the one hand, 
fire sale funds may sell their most liquid positions to mitigate price impact (in which case trading on the reversal should be profitable). On the other 
hand, they may sell stocks about which they are particularly pessimistic (in which case the reversal may never materialize). Given this uncertainty, 
investors may be reluctant to bid up the fire sale stock even after they become aware of the fire sale, thereby explaining why the price reversal for 
fire sale stocks is more protracted than the one for peer stocks.  
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wide	trends.	Nor	is	the	effect	explained	by	standard	accounting	controls,	analyst	coverage	or	

institutional	ownership.21	Given	our	identifying	assumption	that	fire	sales	occur	for	reasons	

outside	of	affected	firms,	it	is	actually	reassuring	to	observe	that	the	return	spillover	effect	

is	unaffected	by	the	inclusion	of	these	controls.	Finally,	we	note	that	both	the	spillover	and	

reversal	are	robust	to	controlling	for	the	mutual	fund	selling	pressure	in	peer	firms	(columns	

4‐6).22	This	 suggests	 that	 the	 return	 spillover	we	 document	 is	 not	 driven	 by	 peer	 firms	

experiencing	 distressed	 selling	 themselves,	 a	 point	 which	 we	 belabor	 further	 in	 the	

robustness	section.		

One	slightly	worrying	aspect	of	Table	II	is	that	returns	of	fire	sale	stocks	already	show	a	small	

but	significant	reduction	one	quarter	prior	to	the	fire	sale	event.	This	could	be	indicative	of	

reverse	causality:	some	stocks	experience	distress	and	this	makes	investors	to	pull	out	of	

funds	heavily	invested	in	these	stocks.	While	we	tackle	this	concern	in	the	robustness	section,	

we	acknowledge	that	it	is	difficult	to	rule	this	out	completely.	We	note,	however,	that	reverse	

causality	cannot	explain	the	entirety	of	our	findings.	In	particular,	it	is	hard	to	explain	the	

return	reversal	without	resorting	to	price	pressures	triggered	by	fire‐selling	mutual	funds.	

Thus,	even	if	some	fire	sales	have	been	caused	by	negative	fundamentals,	the	fire	sale	events	

themselves	cause	an	impact‐reversal	pattern,	which	we	show	to	be	spilling	over	to	peer	firms	

(that	 do	 not	 experience	 a	 fire	 sale	 themselves).	 In	 other	 words,	 potential	 endogeneity	

                                                 

21 The coefficient estimates for these control variables mostly have the expected sign: small firms, more-levered firms, firms with fewer analysts, 
and firms with a lower market-to-book ratio have higher quarterly returns. 

22 The coefficient on the mfflow variable is significantly positive as expected, suggesting that higher mutual fund selling pressure (i.e., a more 
negative mfflow) triggers lower returns. The flow measure for non-fire sale mutual funds (mfflow_complement) is not significant. 



– 19 – 

 

concerns	notwithstanding,	the	fact	that	we	observe	a	return	shock	and	its	reversal	for	both	

fire	sale	stocks	and	their	peers	constitutes	strong	evidence	in	favor	of	a	spillover	mechanism.	

B. Cross‐sectional	Tests	

In	this	subsection,	we	provide	results	for	two	types	of	cross‐sectional	tests.	First,	we	study	

whether	 the	 return	 spillover	 effect	 is	 stronger	 for	 peers	 for	which	 alternative	 sources	of	

public	 information	 are	 scarce—i.e.,	when	a	 rational	 learner	would	need	 to	place	 a	 larger	

weight	on	the	fire	sale	stock.	Second,	we	examine	whether	the	spillover	is	stronger	when	the	

peer	is	more	closely	related	to	the	fire	sale	stock—i.e.,	when	the	stock	price	of	the	fire	sale	

firm	should	be	a	more	informative	signal.		As	our	aim	is	to	study	how	the	spillover	effect	is	

mediated	by	peer	characteristics,	we	focus	on	the	peer	firm	sample	for	this	analysis.23			

B.1.	 Sample	Splits	by	Firm	Characteristics	

Panel	A	of	Table	 III	 shows	 results	 for	 sample	 splits	based	on	 several	proxies	of	 a	 stock’s	

information	quality.	In	our	first	test,	reported	in	columns	1	and	2,	we	split	peer	firms	by	their	

size	 (measured	 by	 total	 assets).	 The	 literature	 routinely	 finds	 that	 small	 stocks	 are	 less	

efficient	and	more	often	mispriced	(Lee	et	al.,	1991;	Hong	et	al.,	2000;	Hou	and	Moskowitz,	

2005).	In	addition,	big	stocks	are	known	to	lead	small	stocks	in	terms	of	price	discovery	(e.g.,	

Lo	 and	MacKinlay,	 1990;	 and	Hou,	 2007).	 Thus,	when	 conditioning	 on	 publicly	 available	

prices,	investors	of	small	firms	should	put	a	lower	weight	on	their	own	stock	and	a	higher	

weight	on	other	stocks.	As	such,	small	stocks	should	respond	more	strongly	to	a	 fire	sale	

                                                 

23 Specifically, we	drop	all	firm‐quarter	observations	surrounding	fire	sale	events	within	8	quarters. When we do not drop fire sale firms, 
we find that some firm characteristics—in particular the absence of an investment grade credit rating—are associated with a stronger fire sale effect. 
In any case, our results for peer firms are unchanged regardless of whether we include fire sale stocks or not. 



– 20 – 

 

hitting	one	of	 its	peers.	The	results	confirm	this	 intuition:	at	2.4%,	the	spillover	effect	for	

small	peers	is	almost	twice	as	large	as	the	one	for	large	peers	(1.3%).	As	shown	at	the	bottom	

of	the	table,	this	difference	is	statistically	significant	at	the	5%	level.	

[Include	Table	III	about	here.]	

Next,	we	investigate	the	effect	of	having	an	investment	grade	credit	rating.	Rating	agencies	

have	been	found	to	provide	valuable	information	for	stock	market	investors	(Holthausen	and	

Leftwich,	1986)	and	firms	with	an	investment	grade	rating	should	thus	be	deemed	safer	than	

those	with	a	speculative	grade	rating	or	no	rating	at	all.	We	therefore	expect	a	lower	return	

spillover	effect	for	investment	grade	firms.	Columns	3	and	4	of	Table	III,	Panel	A	indeed	show	

that	the	spillover	effect	 for	non‐investment	grade	firms	(i.e.,	unrated	or	speculative	grade	

firms)	 is	more	 than	 three	 times	 larger	 than	 the	one	 for	 investment	grade	ones—a	highly	

significant	difference.	In	columns	5	and	6,	we	split	peer	firms	by	S&P	500	index	membership.	

Index	 members	 are	 widely	 recognized	 and	 receive	 more	 attention	 by	 the	 public	 media	

(Chang	 et	 al.,	 2014),	which	 should	make	 their	 prices	more	 efficient.	 Consistent	with	 this	

intuition,	we	find	that	the	return	spillover	for	S&P	500	members	is	only	half	as	large	as	for	

non‐members.		This	difference	is	again	statistically	significant.		

Finally,	we	use	financial	analyst	data	to	measure	a	stock’s	information	environment	more	

directly.	We	start	by	splitting	the	sample	based	on	the	number	of	analysts	following	a	firm.	

The	 literature	 finds	 that	 analysts	 provide	 valuable	 information	 to	 investors	 and	 reduce	

information	asymmetry	in	the	market	(Brennan	and	Subrahmanyam,	1995;	Womack,	1996;	

Barber	et	al.,	2001;	Gleason	and	Lee,	2003;	Loh	and	Stulz,	2011;	Kelly	and	Ljungqvist,	2012).	

Consistently,	we	 find	 that	 the	 return	 spillover	effect	 is	more	 than	 twice	as	 large	 for	peer	
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stocks	 with	 below‐median	 analyst	 following	 (column	 7)	 compared	 to	 those	with	 above‐

median	analyst	following	(column	8).	With	a	t‐statistic	of	1.9,	this	difference	is	marginally	

significant.	 For	our	 last	 test,	we	 compute	 stocks’	 average	 (absolute)	 forecast	 error	 (AFE)	

based	on	one‐year‐ahead	EPS	forecasts	over	the	previous	five	years.	The	idea	is	that	stocks	

with	a	low	AFE	have	more	precise	public	information	and	investors	should	thus	place	a	lower	

weight	on	stock	prices	of	their	peers	(Dessaint	et	al.,	2016).	The	results	shown	in	columns	9	

and	10	confirm	this	intuition:	whereas	the	spillover	effect	for	stocks	with	low	AFE	is	1.2%,	it	

rises	to	2.4%	for	stocks	with	above‐median	AFE—again	a	statistically	significant	difference.		

B.2.	 Cross‐sectional	Tests	by	Relationship	Characteristics	

In	Panel	B	of	Table	III,	we	investigate	whether	the	spillover	is	stronger	for	closer	peers	of	fire	

sale	firms,	or	for	peers	connected	to	more	severe	fire	sales.	To	this	end,	we	estimate	equation	

(1)	after	categorizing	peer	stocks	into	groups	based	on	different	relationship	characteristics	

between	them	and	their	respective	fire	sale	stocks,	and	separately	including	different	sets	of	

event‐time	dummy	variables	for	each	peer	category.24	We	begin	by	examining	whether	the	

return	spillover	effect	is	stronger	for	peers	of	fire	sale	firms	that	experience	a	larger	return	

drop	in	the	quarter	of	the	fire	sale.	Specification	1	of	Panel	B	shows	that,	as	expected,	the	

return	 spillover	 is	 larger	 and	 highly	 statistically	 significant	 for	 more	 severe	 fire	 sales,	

whereas	it	is	insignificant	for	less	severe	ones.25		

                                                 

24 We have to proceed in this way rather than conducting sample splits because the fire sale-peer relationship characteristics are only defined for 
the peers of fire sale firms and not for the control stocks.  

25 Less severe fire sales exhibit a return of (only) -1% on average; it is thus not surprising that the return spillover onto peers is not significant for 
this group.  
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The	second	relationship	characteristic	we	consider	is	the	similarity	score	assigned	to	each	

firm	pair	in	the	TNIC	data,	which	allows	us	to	group	peers	according	to	their	proximity	to	the	

fire	sale	firm.	A	higher	similarity	score	means	that	the	peer	is	a	closer	rival	of	the	fire	sale	

firm	 in	 the	 sense	 that	 they	 offer	 more	 similar	 products,	 and	 we	 thus	 expect	 the	 return	

spillover	effect	to	be	stronger	in	this	case.	The	results	shown	in	specification	2	of	Panel	B	

confirm	this	intuition:	peers	with	an	above‐median	similarity	score	exhibit	a	price	spillover	

that	is	three	times	as	strong	as	the	one	for	peers	with	below‐median	similarity	score.	The	

difference	is	strongly	statistically	significant.		

Next,	we	investigate	whether	the	spillover	effect	varies	with	the	number	of	peers	of	a	given	

fire	sale	firm.	The	 idea	is	that	the	average	spillover	effect	may	be	weaker	when	there	are	

many	peers,	because	then	the	price	drop	of	the	fire	sale	firm	is	only	one	out	of	many	available	

price	signals.	The	results	for	specification	3	in	Panel	B	are	in	line	with	this	expectation.	For	

fire	sales	with	ten	or	more	peers,	the	average	spillover	effect	is	1.7%,	compared	to	2.1%	for	

fire	sales	with	less	than	ten	peers.	This	difference	is,	however,	not	statistically	significant.			

Our	results	so	far	show	that,	on	average,	negative	returns	for	fire	sale	firms	are	considered	

bad	 news	 for	 their	 peers.	 In	 our	 third	 cross‐sectional	 test,	 we	 study	 whether	 there	 is	

variation	among	peers	along	this	dimension.	To	this	end,	we	estimate	return	correlations	

between	fire	sale	firms	and	their	peers	(using	8	quarters	of	daily	return	data	prior	to	the	fire	

sale).	Intuitively,	we	expect	the	return	spillover	effect	to	be	stronger	for	peers	that	have	a	

higher	return	correlation	with	the	fire	sale	stock.	As	shown	in	specification	4	of	Panel	B,	this	

intuition	is	clearly	borne	out	in	the	data:	peers	with	an	above‐median	return	correlation	to	

the	fire	sale	stock	see	a	spillover	effect	of	2.8%,	whereas	peers	with	below‐median	return	
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correlation	 only	 see	 a	 price	 drop	 of	 1.2%.	 This	 difference	 is	 statistically	 significant.	 In	

principle,	bad	news	about	the	fire	sale	stock	could	even	be	good	news	for	some	peers.	We	

therefore	explore	 the	 relation	between	return	 spillovers	 and	 return	correlations	 in	more	

detail.	Specifically,	in	Figure	3,	we	report	the	estimated	return	spillover	effects	that	we	obtain	

when	we	group	peers	into	quintiles.		In	the	lowest	quintile,	the	spillover	effect	is	still	negative,	

but	close	to	zero	and	statistically	insignificant.	In	this	group,	the	average	return	correlation	

is	 low	 but	 still	 positive.	 It	 thus	 seems	 to	 be	 difficult	 to	 identify	 peer	 firms	 which	

unconditionally	benefit	from	bad	news	to	one	of	its	product‐market	competitors.	Figure	3	

further	shows	that	the	return	spillover	effect	rises	(almost)	monotonically	across	quintiles.	

Hence,	the	stronger	the	prior	return	correlation,	the	stronger	the	return	spillover	from	the	

fire	sale	stock	onto	its	peer.		

In	our	last	cross‐sectional	test,	we	examine	whether	the	return	spillover	effect	is	stronger	

for	peer	stocks	with	a	larger	turnover‐volatility	correlation.	Banerjee	(2011)	shows	that	this	

correlation	may	serve	as	a	proxy	for	the	extent	to	which	investors	condition	on	prices.	In	his	

model,	a	low	correlation	between	share	turnover	and	volatility	is	consistent	with	investors	

being	oblivious	to	information	contained	in	prices,	whereas	a	high	correlation	obtains	when	

investors	 condition	on	prices.	We	 therefore	group	peers	based	on	 the	 turnover‐volatility	

correlation	(estimated	using	daily	stock	market	data	over	 the	8	quarters	prior	 to	the	 fire	

sale).	As	predicted	by	Banerjee	(2011),	we	find	that	the	return	spillover	effect	is	significantly	

larger	for	peer	stocks	with	an	above‐median	turnover‐volatility	correlation.	

In	summary,	this	subsection	shows	that	return	spillovers	are	stronger	(1)	for	peers	whose	

own	prices	are	less	efficient	and	(2)	for	peers	that	are	more	closely	related	to	fire	sale	firms.	
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Overall,	these	results	offer	strong	support	for	the	information	spillover	hypothesis.	Finally,	

we	acknowledge	that	there	is	little	evidence	that	stocks	with	a	larger	spillover	also	display	a	

stronger	return	reversal.	This	 is	 likely	explained	by	a	 loss	 in	statistical	power,	as	returns	

cumulated	over	a	1‐2	year	period	 tend	 to	be	quite	volatile.	We	note,	however,	 that	while	

being	statistically	insignificant,	reversals	are	typically	of	the	same	economic	magnitude	than	

those	found	in	Table	II	and	we	can	never	reject	the	hypothesis	of	there	being	a	full	reversal	

within	four	quarters	(unreported).		

C. Robustness	

In	this	subsection,	we	examine	the	robustness	of	the	return	spillover.	Because	many	of	the	

control	variables	used	below	cannot	be	defined	 for	 fire	 sale	 stocks,	we	exclude	all	 stock‐

quarter	observations	within	eight	quarters	of	a	fire	sale.	Consequently,	we	also	drop	the	fire	

sale	dummies	from	the	regressions.	The	results	are	shown	in	Table	IV.	For	comparison,	we	

report	in	specification	1	of	this	table	the	return	spillover	effect	that	obtains	in	this	setting	if	

we	include	all	the	controls	from	before.	Not	surprisingly,	the	results	closely	resemble	those	

reported	in	Table	II.26			

[Include	Table	IV	about	here.]	

The	first	alternative	explanation	we	consider	is	liquidity	provision.	Even	in	a	world	without	

asymmetric	 information,	 price	 pressure	 effects	 arise	when	market	makers	 are	 averse	 to	

deviating	from	their	target	inventory	(e.g.,	Ho	and	Stoll,	1981;	Grossman	and	Miller,	1988).	

                                                 

26 The only difference is that the return reversal is now only marginally significant. However, this is solely explained from the loss in power that 
comes with the reduction of the sample size (due to the exclusion of all stock-quarter observations surrounding fire sales) as, in terms of economic 
magnitude, the return reversal continues to completely offset the return spillover effect. 
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When	 there	 is	a	drop	 in	stock	prices	due	 to	a	 fire	 sale,	 arbitrageurs	have	an	 incentive	 to	

provide	 liquidity	 to	 the	 fire‐selling	 funds,	and	 they	may	want	 to	hedge	 their	positions	by	

selling	peer	stocks.	If	enough	arbitrageurs	hedge	their	exposure	to	fire	sale	stocks,	this	could	

explain	why	peer	stocks	also	see	a	small	price	pressure	effect	themselves.	Our	first	argument	

against	this	alternative	explanation	draws	on	the	rational	learning	model	that	we	present	in	

Internet	Appendix	A.	Specifically,	we	show	there	that,	while	both	cross‐asset	learning	and	

cross‐asset	hedging	give	rise	to	price	spillovers,	only	cross‐asset	learning	can	also	explain	

the	presence	of	a	simultaneous	liquidity	spillover.27	Thus,	evidence	for	liquidity	spillovers	to	

peer	stocks—which	we	present	in	subsection	IV.C	below—favors	our	learning	interpretation	

over	cross‐asset	hedging.	

We	now	employ	two	proxies	to	deal	with	this	concern	empirically.	Our	first	proxy	is	designed	

to	capture	liquidity	provision	by	current	owners	of	peer	stocks.	Indeed,	these	investors	are	

natural	liquidity	providers	to	fire‐selling	funds	as	they	can	buy	from	them	at	fire	sale	prices	

and	hedge	their	purchases	by	selling	peer	stocks	without	needing	to	sell	short—a	trade	that	

promises	 to	 return	 the	 fire	 sale	 discount	 in	 expectation. 28 	The	 liquidity	 provision	 proxy	

measures	 the	 extent	 by	 which	 current	 peer	 stock	 owners	 enter	 this	 arbitrage	 trade.	

Specifically,	 for	 each	 stock,	we	 calculate	 the	minimum	of	 the	dollar	 selling	 volume	by	 its	

current	owners	and	their	corresponding	buy	volume	in	fire	sale	stocks,	and	scale	this	by	the	

                                                 

27 In	Cespa	and	Foucault	(2014),	hedging	by	cross‐market	arbitrageurs	even	dampens	the	liquidity	spillover	as	these	arbitrageurs	absorb	
part	of	the	selling	pressure	by	distressed	funds,	thereby	mitigating	the	shock	to	the	price	informativeness	of	the	fire	sale	stock. 

28 In	addition	to	saving	the	short‐lending	fee,	they	may	also	be	more	informed	about	peer	stocks	compared	to	other	potential	liquidity	
providers,	enabling	them	to	guess	better	the	non‐fundamental	nature	of	the	fire	sale	shock. 
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stock’s	market	capitalization.	Our	second	proxy	is	short	interest,	i.e.	the	number	of	shares	on	

loan	as	a	fraction	of	the	number	of	shares	outstanding,	and	captures	liquidity	provision	by	

non‐owners	of	peers	stocks.	Specifications	2	and	3	of	Table	 IV	show	the	results	when	we	

include	 these	proxies	as	 control	variables.	 In	both	 cases,	we	obtain	 significantly	negative	

coefficients,	consistent	with	cross‐asset	hedging	having	some	price	impact:	more	liquidity	

provision	by	current	owners	or	short	sellers	is	associated	with	lower	returns	for	peer	stocks.	

Nonetheless,	the	return	spillover	effect	(i.e.,	the	coefficient	of	the	ܴܲܧܧ	dummy	for	ݐ ൌ 0)	is	

hardly	 affected	 and	 remains	 strongly	 significant. 29 	Hence,	 the	 drop	 in	 the	 stock	 price	

observed	for	peer	firms	does	not	seem	to	be	explained	by	liquidity	provision.30	

Next,	we	explore	whether	peer	firms	themselves	experience	mutual	 fund	selling	pressure	

which	causes	 the	 impact‐reversal	pattern	 in	their	stock	returns.	 	Note,	however,	 that	this	

selling	pressure	could	not	have	been	very	large,	as	we	require	a	peer	firm	not	to	have	had	a	

fire	sale	itself	within	eight	quarters.	Nevertheless,	since	the	impact‐reversal	pattern	for	peer	

firms	is	only	one	fifth	of	the	fire	sale	effect,	it	is	conceivable	that	it	was	triggered	by	a	small‐

scale	fire	sale.	In	our	main	specification	from	Table	II,	we	deal	with	this	concern	by	including	

a	stock’s	own	mfflow	as	a	control	variable.	The	mfflow	measure	turns	out	to	be	non‐normal	

and	highly	skewed,	however	(see	Table	I).	As	a	robustness	check,	we	therefore	replace	it	by	

a	set	of	dummy	variables	that	flag	different	mfflow	deciles.	In	different	tests,	we	also	control	

                                                 

29 The liquidity provision proxy has a median of 0 and never exceeds 1‰. Thus, it appears as if the current owners of peer stocks do not provide 
much liquidity to fire sale funds, explaining why the price spillover effect is virtually unchanged when we include this control. 

30 The return spillover effect is unlikely to be explained by liquidity providers’ short-selling activity for yet another reason. Indeed, if the return 
spillover comes from the selling pressure induced by short sales, we would expect it to be stronger for peers that are easy to short. In fact, we find 
the opposite since the return spillover effect is weaker for large stocks and stocks that are member of the S&P 500 (e.g., Saffi and Sigurdson, 2011).   
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for	the	fraction	of	the	stock	owned	by	fire	sale	funds	(labeled	fire	sale	stock	share)	and	for	the	

portfolio	fraction	of	fire	sale	stocks	held	by	the	mutual	funds	owning	the	stock	(labeled	fire	

sale	fund	share).	Specifications	4	to	6	of	Table	IV	report	that	the	price	spillover	effect	is	not	

affected	by	any	of	 these	changes.	We	conclude	 that	 it	 is	unlikely	 that	 the	 impact‐reversal	

pattern	for	peer	firms	is	due	to	forced	selling	by	distressed	mutual	funds.	

We	next	discuss	the	possibility	that	the	return	spillover	effect	is	explained	by	a	corporate	

investment	channel.	Indeed,	Dessaint	et	al.	(2016)	find	that	peer	firms	temporarily	curb	their	

investment	around	mutual	fund	fire	sales.	If	this	cut	in	investment	is	tracked	or	anticipated	

by	investors,	this	could	explain	why	they	discount	the	shares.	To	mitigate	this	concern,	we	

directly	control	for	peer	firms’	capital	expenditures	(scaled	by	the	stock	of	PPE	at	the	end	of	

the	previous	quarter),	obtained	from	the	Compustat	quarterly	files,	in	column	7.	While	the	

capex	control	garners	a	negative	significant	coefficient	(suggesting	that	higher	capex	leads	

to	lower	returns),	its	economic	magnitude	is	small,	explaining	why	the	return	spillover	effect	

is	 not	much	 affected.	 This	 rules	 out	 the	 corporate	 investment	 channel	 as	 an	 alternative	

explanation.			

Next,	we	consider	reverse	causality:	it	could	be	that	negative	fundamentals	about	an	industry	

trigger	outflows	from	mutual	funds	heavily	invested	in	that	industry,	which	forces	them	to	

liquidate	part	of	their	assets	at	fire	sale	prices.	The	worry	is	that	the	drop	in	returns	for	peer	

firms	reflects	the	negative	fundamentals	instead	of	being	caused	by	an	information	spillover	

channel	 like	 we	 claim.	 As	 noted	 above,	 the	 quick	 reversal	 of	 the	 peer	 effect	 is	 clearly	

inconsistent	with	this	explanation.	We	now	strengthen	this	conclusion	by	showing	that	the	

return	spillover	effect	is	robust	to	controlling	for	industry	trends	through	the	inclusion	of	
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industry‐quarter	fixed	effects.31	The	results	in	the	last	column	of	Table	IV	confirm	that	the	

impact‐reversal	pattern	for	both	 fire‐sale	stocks	and	their	close	economic	peers	 is	hardly	

affected	 by	 this	 change.	We	 conclude	 that	 the	 return	 spillover	 result	 is	 not	 explained	by	

industry	distress.	

Finally,	we	verify	that	the	return	spillover	result	is	robust	to	measuring	returns	in	different	

ways.	Note	first	that,	although	we	use	raw	returns	for	our	main	spillover	tests	in	Table	II,	the	

inclusion	of	time	fixed	effects	means	that	we	are	always	neutralizing	general	market	trends.	

In	other	words,	it	is	effectively	as	if	we	were	using	market‐adjusted	returns.	In	column	8	of	

Table	IV,	we	further	show	that	 the	spillover	effect	survives	the	 inclusion	of	 industry‐time	

fixed	effects.	This	implies	that	the	spillover	effect	is	robust	to	using	industry‐adjusted	returns.	

In	 Internet	Appendix	B.2,	we	 confirm	 that	we	get	 very	 similar	 results	 if	we	use	different	

variants	of	risk‐adjusted	returns:	benchmark‐adjusted	returns	as	recommended	by	Daniel	

et	al.	(1997),	CAPM‐alphas,	Fama	and	French	(1993)	3‐factor	alphas,	Carhart	(1997)	4‐factor	

alpha,	or	Fama	and	French	(2014)	5‐factor	alphas.	Indeed,	for	all	these	measures,	we	obtain	

significant	 fire	 sale	 and	peer	 spillover	 effects	 that	 revert	 over	 time.32	Thus,	 common	 risk	

factors	do	not	explain	the	impact‐reversal	patterns	that	we	observe.	

	 	

                                                 

31 We use the Fama-French 48 industry classification.  

32  For Carhart 4-factor and Fama-French 5-factor alphas, the return reversal for peer firms fails to be statistically significant. However, 
economically the reversal almost fully offsets the peer spillover effect and we can never reject the null that there was a complete return reversal. 
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IV. Additional	Evidence	

A. Placebo	

The	“learning	channel”	explanation	for	the	return	spillover	of	fire	sales	relies	on	the	presence	

of	uncertainty:	investors	cannot	be	sure	that	the	price	decline	in	a	fire	sale	stock	is	not	due	

to	fundamentals	and	therefore	discount	its	peer	firms.	In	other	words,	if	we	were	to	identify	

price	pressure	effects	whose	causes	are	well	understood	by	the	market,	there	should	be	no	

learning	and	thus	no	learning‐based	spillover.	We	argue	that	S&P	500	index	additions	are	

ideally	suited	for	this	type	of	placebo	experiment.33	Indeed,	the	literature	finds	that	stocks	

that	are	announced	to	become	a	member	of	the	S&P	500	index	experience	a	strong	run‐up	in	

returns	 (Harris	 and	 Gurel,	 1986;	 Shleifer,	 1986;	 Beneish	 and	 Whaley,	 1996;	 Lynch	 and	

Mendenhall,	1997;	Chen	et	al.,	2004),	commonly	attributed	to	the	forced	buying	by	passive	

index	 funds	 tracking	 the	 S&P	 500.34	While	 there	 is	 no	 agreement	 in	 the	 literature	 as	 to	

whether	 this	 run‐up	 completely	 or	 only	 partially	 reverses	 after	 the	 addition	 becomes	

effective,35	the	crucial	feature	for	us	is	that	the	public	announcement	of	the	addition	should	

remove	any	uncertainty	regarding	the	value	implications	for	peer	firms.	As	such,	we	don’t	

                                                 

33 We focus on index additions rather than index deletions because the latter are often confounded by corporate events such as mergers, takeovers, 
spinoffs, or immanent bankruptcies (Barberis et al., 2005; Patel and Welch, 2016) and tend to be associated with smaller or even insignificant price 
effects (Lynch and Mendenhall, 1997; Chen et al., 2004; Patel and Welch, 2016).   

34 Consistent with this interpretation, the run-up in returns has been increasing over time concomitant to the growth of passive investment.  

35 It is thus not clear whether the run-up constitutes	a	pure	price	pressure	effect	or	also	something	else. For	instance,	Denis	et	al.	(2003)	show	
that	newly	added	stocks	see	a	rise	in	analysts’	earnings	forecasts	as	well	as	realized	earnings	and	Chen	et	al.	(2004)	document	evidence	of	
increasing	investor	awareness	in	line	with	the	Merton	(1987)	model.	The	literature	agrees,	however,	that	price	pressure	is	part	of	the	
explanation	(see,	for	instance,	Lynch	and	Mendenhall,	1997;	Chen	et	al.,	2004,	and	Chang	et	al.,	2014).	Moreover,	as	documented	by	Patel	
and	Welch	(2016),	index	additions	post	2000	have	seen	stronger	price	reversals	and	are	thus	more	consistent	with	a	price	pressure	effect. 
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expect	a	return	spillover	due	to	cross‐asset	learning	for	S&P	500	index	addition	events,	even	

though	the	run‐up	in	returns	is	almost	as	large	in	(absolute)	magnitude	as	the	fire	sale	effect.		

To	identify	the	inclusion	effect	as	well	as	any	potential	spillover,	we	run	panel	regressions	

similar	 to	 specification	 (1)	 but	 at	 daily	 frequency	 and	where	 the	 fire	 sale	 dummies	 are	

replaced	by	“addition	(AD)	dummies”	that	flag	the	days	surrounding	an	index	addition	event,	

defined	as	the	day	when	a	stock’s	addition	to	the	S&P	500	index	becomes	effective	according	

to	 the	 Compustat	 index	 constituents	 database.	 Our	 sample	 includes	 247	 index	 addition	

events	and	2,502	corresponding	peer	events	over	 the	sample	period	1996	 to	2013.36	The	

peer	dummies	now	 flag	 the	economic	peers	of	newly	added	stocks	 in	event‐time	and	we	

employ	the	same	battery	of	controls	from	before.	All	regressions	include	firm	and	day	fixed	

effects	and	standard	errors	are	double‐clustered	at	the	firm	and	day	level.37		

[Include	Table	V	about	here.]	

The	results	are	reported	in	Table	V	and	visualized	in	Figure	4.	For	the	added	stocks,	we	find	

a	statistically	significant	and	economically	sizable	run‐up	in	returns	setting	in	about	five	days	

prior	to	the	effective	index	addition.	This	is	consistent	with	previous	literature	(Beneish	and	

Whaley,	1996;	Lynch	and	Mendenhall,	1997;	Chen	et	al.,	2004)	and	reflects	the	fact	that	S&P	

typically	announces	the	index	change	roughly	five	days	before	it	becomes	effective	(Beneish	

and	Whaley,	1996).	Column	1	shows,	for	instance,	that	added	stocks	rise	by	5.6%	over	the	

                                                 

36 We again focus on the top ten peers excluding all firms that become S&P 500 index members themselves within one year of the respective 
addition event. 

37 In Internet Appendix B.1, we report similar results using an event study methodology. 
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eight	trading	days	before	the	effective	date	of	the	addition	(t=0)	and	see	their	returns	partly	

reversed	thereafter	(see	also	Figure	4,	Panel	A).	Looking	at	the	peers	of	added	stocks,	we	find	

that	 there	 is	 only	 a	 weak	 spillover	 of	 this	 price	 pressure	 effect.	 For	 instance,	 in	 the	

specification	 without	 controls	 (column	 1),	 peer	 stocks	 have	 an	 insignificant	 cumulated	

abnormal	return	of	only	0.5%	over	 the	eight	days	before	 the	addition	 (see	also	Figure	4,	

Panel	 B). 38 	When	 all	 controls	 are	 added	 (column	 6),	 this	 figure	 remains	 small	 and	

insignificant.	Economically,	the	spillover	to	peers	is	 less	than	10%	when	compared	to	the	

size	of	the	addition	effect,	which	contrasts	with	a	spillover	of	about	20%	that	we	found	for	

fire	sales	(see	Section	III.A).		This	suggests	that	roughly	one	half	of	the	return	spillover	for	

mutual	fund	fire	sales	is	due	to	cross‐asset	learning,	whereas	the	other	half	is	likely	explained	

by	cross‐asset	hedging	(and	 is	 thus	present	 in	both	settings).	We	 therefore	establish	 that	

information	 spillovers	 contribute	 to	 return	 comovements	 over	 and	 above	 what	 can	 be	

explained	by	cross‐asset	liquidity	provision	alone.	

B. Liquidity	Spillovers	

To	the	extent	that	fire	sales	reduce	the	price	informativeness	of	fire	sale	stocks,	models	with	

learning	 from	prices	predict	 that	peer	 stocks	 should	 see	a	deterioration	 in	 liquidity	 (e.g.,	

Admati,	1985;	Cespa	and	Foucault,	2014).	Such	a	decrease	in	the	price	informativeness	of	

fire	sale	stocks	could	occur	for	several	reasons.	First,	the	selling	pressure	by	fire	sale	funds	

may	lead	to	the	perception	of	higher	noise	trader	risk,	for	which	risk‐averse	market	makers	

                                                 

38 If	anything,	Figure	4,	Panel	B,	shows	slowly	increasing	returns	for	peer	stocks	after	the	addition	event.	This	may	reflect	the	existence	of	
a	common	upward	trend	underlying	all	stocks	in	that	industry.	After	all,	stocks	that	are	added	to	the	S&P	500	have	been	growing	in	the	
past	and	this	may	be	also	true	for	their	peers.	 
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would	demand	higher	compensation	(e.g.,	Ho	and	Stoll,	1981;	Grossman	and	Miller,	1988).	

Second,	 when	 there	 is	 uncertainty	 about	 whether	 informed	 traders	 are	 present,	 a	 large	

unexpected	 fire	sale	may	 lead	to	an	update	of	 this	probability,	 causing	market	makers	 to	

increase	 price	 impact	 to	 protect	 themselves	 against	 the	 perceived	 increase	 in	 adverse	

selection	(e.g.,	Easley	and	O’Hara,	1992).	Finally,	it	is	possible	that	the	price	drop	in	fire	sale	

stocks	 hurts	 informed	 arbitrageurs,	 who	 in	 response	 trade	 less	 aggressively,	 thereby	

rendering	the	stock	price	less	efficient	(Dow	and	Han,	2016).	Whatever	the	cause,	once	price	

informativeness	falls,	liquidity	providers	in	peer	stocks	face	higher	uncertainty	and	respond	

by	curbing	 their	 liquidity	provision.	 Importantly,	 this	 liquidity	spillover	 is	a	side	effect	of	

cross‐asset	 learning—alternative	 spillover	 channels	 such	 as	 cross‐asset	 hedging	 do	 not	

make	such	a	prediction.39			

[Include	Table	VI	about	here.]	

In	this	subsection	we	test	whether	mutual	fund	selling	pressure	hurts	the	liquidity	of	fire	sale	

stocks	 and	 their	 peers.	 To	 this	 end,	we	 estimate	 equation	 (1)	 for	 four	 different	 liquidity	

proxies:	bid‐ask	spreads,	the	logarithm	of	the	Amihud	illiquidity	ratio	(Amihud,	2002),	the	

probability	 of	 informed	 trading	 (PIN,	 Easley	 et	 al.,	 1996),	 and	 share	 turnover.	 Table	 VII,	

Panels	A	to	D,	show	the	results.	The	first	thing	to	notice	is	that	there	is	strong	evidence	for	a	

dry‐up	in	liquidity	for	fire	sale	firms	with	all	four	liquidity	measures.	For	instance,	bid‐ask	

spreads	go	up	by	 roughly	15‐18	basis	points	 (Panel	A),	 representing	an	 increase	of	10%	

relative	to	the	unconditional	mean,	and	remain	elevated	for	about	four	quarters	after	the	fire	

                                                 

39 See our model in Internet Appendix A for more discussion on this point. 



– 33 – 

 

sale.	 For	 PIN,	 the	 increase	 is	 smaller	 with	 about	 4‐5%	 (Panel	 C)	 but	 still	 statistically	

significant.	For	the	logarithm	of	Amihud	(Panel	B)	and	share	turnover	(Panel	D),	the	decrease	

in	liquidity	is	even	larger,	but	we	acknowledge	that	these	results	have	a	mechanical	touch	to	

them,	as	fire	sale	events	are	defined	as	events	where	funds’	selling	pressure	is	large	relative	

to	the	stock’s	trading	volume	(see	Appendix	B).	Overall,	the	evidence	for	a	deterioration	in	

liquidity	is	nonetheless	overwhelming.		

Table	VII	also	shows	that	the	dry‐up	in	liquidity	spills	over	to	the	economic	peers	of	fire	sale	

firms.	Indeed,	the	event‐time	dummy	for	peer	firms	is	at	least	marginally	significant	for	all	

four	measures	of	liquidity	in	the	quarter	of	the	fire	sale.	In	terms	of	magnitude,	the	liquidity	

spillover	represents	between	one	tenth	(for	turnover)	to	one	third	(for	bid‐ask	spreads)	of	

the	original	fire	sale	effect.	All	these	effects	disappear	after	at	most	two	quarters	(not	shown	

for	brevity),	proving	that	the	shock	to	the	liquidity	of	peer	stocks	is	only	temporary.	These	

results	are	consistent	with	models	of	rational	 learning,	which	predict	that	market	makers	

react	 to	 the	 decreased	 price	 informativeness	 of	 the	 fire	 sale	 stock	 by	 curbing	 back	 their	

liquidity	provision	in	peer	firms.	Indeed,	we	demonstrate	in	Internet	Appendix	A	that	such	a	

liquidity	 spillover	 effect	 is	 a	 unique	 prediction	 of	 cross‐asset	 learning	 and	 cannot	 be	

explained	 by	 alternative	 spillover	 channels	 such	 as	 the	 hedging	 activity	 by	 liquidity‐

providing	arbitrageurs.		

V. Conclusion	

In	 this	 paper	we	 test	 and	 confirm	 a	 basic	 tenet	 of	 the	 large	 literature	 on	 trading	 under	

asymmetric	information—the	assumption	that	investors	can	and	do	learn	from	prices.	We	

test	this	conjecture	in	the	context	of	mutual	fund	fire	sales,	which	have	been	found	to	trigger	



– 34 – 

 

substantial	price	pressure	effects	(Coval	and	Stafford,	2007).	We	argue	that,	when	the	fire	

sale	occurs,	investors	are	at	first	unsure	whether	the	price	decline	is	caused	by	forced	selling	

or	 negative	 news	 about	 fundamentals.	 Thus,	 if	 investors	 learn	 from	 prices,	 they	 should	

update	their	expectations	of	close	economic	peers.	Over	time,	the	non‐fundamental	nature	

of	 the	 price	 decline	 becomes	 apparent	 and	 investors	 return	 to	 their	 initial	 expectations.	

Consistent	with	this	learning	channel,	we	find	that	the	impact‐reversal	pattern	for	fire	sale	

stocks	spills	over	onto	the	stock	prices	of	economic	peers.	It	is	precisely	the	non‐fundamental	

nature	 of	 the	 fire	 sale	 shock	 that	 helps	 our	 identification,	 as	 it	 ensures	 that	 this	 return	

spillover	 onto	 peer	 firms	 cannot	 be	 explained	 by	 investors	 reacting	 to	 new	 information	

common	to	many	stocks.		

Additional	results	corroborate	the	learning	channel	interpretation.	First,	the	return	spillover	

effect	 is	 stronger	 (1)	 for	peers	 in	a	weaker	 information	environment	 (i.e.,	 smaller	stocks,	

unrated	stocks,	stocks	with	fewer	analysts,	and	stocks	with	larger	forecast	errors)	and	(2)	

for	peers	that	are	more	closely	related	to	the	fire	sale	firm	(i.e.,	peers	with	a	higher	TNIC	

similarity	score	or	a	higher	return	correlation)—consistent	with	rational	learners	placing	a	

larger	weight	on	the	stock	price	of	fire	sale	firms	in	such	cases.	Second,	we	show	that	another	

type	 of	 price	 pressure—the	 S&P	 500	 index	 addition	 effect—leads	 to	 a	 weaker	 return	

spillover,	consistent	with	cross‐asset	learning	being	less	important	when	the	ultimate	cause	

of	the	price	pressure	is	widely	understood	by	market	participants.	Finally,	we	find	evidence	

of	 a	 liquidity	 spillover	 to	 peer	 firms.	 These	 findings	 support	 recent	 theory	 showing	 how	

cross‐asset	 learning	 leads	 to	 an	 interdependence	 of	 the	 informational	 efficiency	 across	

stocks	(Cespa	and	Foucault,	2014).		
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Apart	from	identifying	learning	from	prices,	these	results	have	broader	implications	for	our	

understanding	of	return	and	liquidity	comovements	in	the	stock	market.	They	show	that,	as	

investors	try	to	solve	the	massive	filtering	problem	posed	by	a	stock	market	in	which	every	

price	is	a	potential	signal	for	any	other,	they	occasionally	make	mistakes	and	update	on	noise.	

Thus,	the	very	fact	that	investors	engage	in	cross‐asset	learning	causes	spillover	effects	that	

contribute	 to	 the	 documented	 comovement	 in	 returns	 and	 liquidity	 (e.g.,	 Pindyck	 and	

Rotemberg,	1993;	Chordia	et	al.,	2000).	Future	research	on	the	sources	of	commonalities	in	

returns	and	liquidity	should	take	this	cross‐asset	learning	channel	into	account.	
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Figure 1: Number of Fire Sale and Peer Events over time 
This figure shows the number of fire sale and peer events over our sample period from 1996 to 2013. Fire sale events 
are defined as in Edmans et al. (2012) [and explained in Appendix B]. For each fire sale event, we define as peer 
events the ten closest economic peers (according to the TNIC similarity score developed by Hoberg and Philips, 2010a, 
2015) that are not undergoing a fire sale themselves in the preceding or succeeding eight quarters.  

  

 
  



– 42 – 

 

Figure 2: Event-time Returns for Fire Sale and Peer Firms 
This figure shows returns for fire sale firms (Panel A) and peer firms (Panel B) in event-time (where 0 is the quarter 
of the fire sale). These graphs are based on the cumulated coefficient estimates of the fire sale and peer dummies 
shown in Table II, column 1. The grey band around the cumulated returns represents the 95%-confidence interval.  
 
Panel A: Fire Sale Firms 

 
 
Panel B: Peer Firms 
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Figure 3: Return Spillover Effect for Peer Firms by Return Correlation 
This figure shows the return spillover effect for quintiles of peer firms grouped by their prior return correlation with 
the fire sale stock. Return correlations are computed using daily stock returns over the 8 quarters prior to the fire sale. 
The spillover effects are then obtained by estimating equation (1) after replacing the peer dummy variable with five 
dummy variables for each return correlation quintile. The red lines represent the 95%-confidence intervals based on 
the standard errors of these estimated dummy coefficients. 
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Figure 4: Event-time Returns for S&P 500 Index Additions and Peer Firms 
This figure shows returns for firms added to the S&P 500 index (Panel A) and their peers (Panel B) in event-time 
(where 0 is the day when the index addition becomes effective). These graphs are based on the cumulated coefficient 
estimates of the addition and peer dummies shown in Table V, column 1. The grey band around the cumulated returns 
represents the 95%-confidence interval.  
 
Panel A: Added Firms 

 
Panel B: Peer Firms 
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Table I: Descriptive Statistics 
This table shows descriptive statistics for the main dependent and control variables used in this study. N indicates the 
number of non-missing observations at the stock-quarter level over our sample period (after dropping non-common 
shares [i.e., retaining only CRSP share codes 10 and 11], stocks with an end-of-quarter price below $1, and stocks 
with less than 10 daily non-missing return observations in a quarter). Return is the compounded quarterly return. Bid-
ask spread is defined as the average daily relative bid-ask spread (multiplied by 100). Log Amihud is defined as the 
natural logarithm of the average ratio of absolute returns over dollar volume scaled by one million. PIN is the 
probability of informed trading (Easley et al., 1996) estimated at quarterly frequency. Turnover is defined as the total 
dollar volume in the quarter divided by the market capitalization at the end of the previous quarter. Log turnover is 
the natural logarithm of one plus turnover. Total assets and return on assets are those reported for the end of the 
previous fiscal year. Log total assets is the natural logarithm of total assets. Leverage is the ratio of long-term debt 
and current liabilities over stockholders’ equity (at the end of the previous fiscal year). Log leverage is the natural 
logarithm of one plus leverage. Market-to-book is the ratio of the stock’s market value at the end of the previous 
quarter over the stockholders’ equity. Investment (speculative) grade is a dummy variable that indicates whether a 
firm’s long-term debt has an investment grade (speculative grade) rating given by S&P. The remaining fraction of 
stock-quarter observation does not have a long-term bond rating. Num. analysts is the number of analysts following a 
stock at the end of the previous quarter. Log analysts is the natural logarithm of one plus the number of analysts. 
Mutual fund ownership is the fraction of shares outstanding owned by open-ended mutual funds at the end of the 
previous quarter. Institutional ownership is the fraction of shares outstanding owned by institutional investors at the 
end of the previous quarter. Mfflow is the selling pressure by mutual funds experiencing a fire sale as defined in 
Edmans et al. (2012). Mfflow complement is the difference between mutual fund trading pressure by all mutual funds 
and the selling pressure by fire-selling mutual funds. All variables are winsorized at the 0.5% level on both sides.    

 

 
 
 

     Quantiles  

 N Mean S.D. 0.25 Median 0.75 

Dependent variables:       

Return 353,146 0.04 0.29 -0.12 0.02 0.15 

Bid-ask spread 352,528 2.18 3.19 0.23 1.06 2.83 

Log Amihud 353,138 -3.23 3.38 -5.83 -3.34 -0.63 

PIN 271,492 0.21 0.12 0.12 0.18 0.28 

Turnover 342,933 0.43 0.55 0.11 0.25 0.54 

Control variables:    
Total assets 349,785 3,641.55 15,236.01 75.94 324.97 1,355.04 

Leverage 348,278 0.9 3.17 0.02 0.37 1.05 

Investment grade 353,146 0.13 0.33 0 0 0 

Speculative grade 353,146 0.11 0.32 0 0 0 

Market-to-book 349,780 3.52 9.08 1.11 1.89 3.47 

Return on assets 349,222 -0.04 0.35 -0.02 0.02 0.06 

Num. analysts 353,146 5.04 6.33 0 3 7 

Mutual fund ownership 353,146 0.16 0.14 0.03 0.13 0.26 

Inst. ownership 353,146 0.43 0.31 0.15 0.4 0.7 

Mfflow  326,122 -0.01 0.06 -0.01 0 0 

Mfflow complement 326,122 0.09 5.53 0 0.01 0.02 
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Table II: Return Spillover Effect 
This table reports results from estimating equation (1) at the stock-quarter level. The dependent variable is the quarterly return. The main independent variables are FS 
and PEER dummies that flag fire sale events and peers for fire sale events, respectively. For example, the FS(t=4) dummy equals one when the given firm experienced 
a fire sale 4 quarters ago and the PEER(t=4) dummy equals one for all peer firms of a firm that experienced a fire sale 4 quarters ago (and that did not themselves 
experience a fire sale in the previous or subsequent 8 quarters). All regressions include dummies from t=-16 to t=16; for brevity we only show the coefficients for t=-
2 to t=8. Firm and quarter fixed effects are included in all specifications. In specification 2, additional firm-level controls are included (logarithm of total assets, 
logarithm of leverage, investment grade dummy, speculative grade dummy, market-to-book ratio, return on assets, logarithm of number of analysts). In specification 
3, ownership controls are included (mutual fund ownership, institutional ownership). In specification 4, mutual fund flow controls are included (separately for fire sale 
funds and others). In specification 5, ownership and flow controls are included. In specification 6, firm-level, ownership and flow controls are included. All variables 
are defined in Appendix A. Standard errors are double-clustered at the firm and quarter level. t-statistics are reported below coefficient estimates in parentheses. At the 
bottom of the table, we report the sum of the FS and PEER dummy coefficients for windows [1, 4] and [1, 8], respectively, together with the corresponding t-statistic 
for the cumulated return reversal. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels.    
 

 (1)  (2)  (3)  (4)  (5)  (6) 
Event-
time 

FS PEER   FS  PEER  FS  PEER  FS  PEER  FS  PEER  FS  PEER 

t = -2 -0.004 -0.000  -0.003 -0.001  -0.001 -0.000  -0.004 -0.001  -0.001 -0.001  -0.002 -0.002 
 (-0.77) (-0.14)  (-0.61) (-0.34)  (-0.14) (-0.15)  (-0.82) (-0.38)  (-0.16) (-0.38)  (-0.46) (-0.59) 
t = -1 -0.016** -0.006  -0.015** -0.005  -0.012* -0.007  -0.016** -0.005  -0.012 -0.006  -0.013* -0.005 
 (-2.27) (-1.52)  (-2.22) (-1.28)  (-1.74) (-1.57)  (-2.14) (-1.30)  (-1.64) (-1.34)  (-1.94) (-1.19) 
t = 0 -0.076*** -0.015***  -0.074*** -0.015***  -0.071*** -0.016***  -0.071*** -0.013***  -0.067*** -0.014***  -0.068*** -0.014*** 
 (-8.58) (-3.58)  (-8.53) (-3.46)  (-8.14) (-3.75)  (-9.08) (-3.25)  (-8.66) (-3.52)  (-8.94) (-3.33) 
t = 1 0.004 0.004  0.004 0.005 0.007 0.004 0.005 0.006* 0.008 0.006* 0.005 0.006* 
 (0.71) (1.42)  (0.62) (1.60)  (1.21) (1.43)  (0.82) (1.91)  (1.31) (1.91)  (0.88) (1.98) 
t = 2 0.007 0.003  0.007 0.004  0.009 0.003  0.007 0.003  0.009 0.003  0.008 0.004 
 (1.10) (0.91)  (1.16) (1.24)  (1.49) (1.04)  (1.12) (0.85)  (1.50) (0.96)  (1.26) (1.05) 
t = 3 0.016* 0.004  0.015 0.005  0.018* 0.005  0.015 0.004  0.017* 0.004  0.015 0.004 
 (1.69) (1.00)  (1.66) (1.20)  (1.89) (1.12)  (1.53) (0.86)  (1.71) (0.96)  (1.56) (1.03) 
t = 4 0.005 0.005  0.005 0.005  0.007 0.005  0.008 0.006  0.010 0.006  0.007 0.006 
 (0.82) (1.23)  (0.73) (1.49)  (1.08) (1.37)  (1.23) (1.46)  (1.50) (1.62)  (1.17) (1.63) 
t = 5 -0.006 -0.002  -0.006 -0.001  -0.004 -0.002  -0.006 -0.003  -0.004 -0.002  -0.006 -0.001 
 (-0.85) (-0.61)  (-0.95) (-0.24)  (-0.65) (-0.46)  (-0.90) (-0.68)  (-0.70) (-0.52)  (-0.91) (-0.29) 
t = 6 0.005 -0.002  0.005 -0.001  0.007 -0.002  0.006 -0.002  0.007 -0.002  0.006 -0.001 
 (1.09) (-0.48)  (1.03) (-0.12)  (1.39) (-0.37)  (1.21) (-0.54)  (1.49) (-0.43)  (1.24) (-0.19) 
t = 7 0.011 0.000  0.011 0.001  0.013* 0.001  0.011 0.000  0.013* 0.001  0.012 0.001 
 (1.49) (0.06)  (1.51) (0.32)  (1.69) (0.30)  (1.49) (0.12)  (1.68) (0.38)  (1.55) (0.41) 
t = 8 -0.002 0.002  -0.003 0.003  -0.001 0.002  -0.003 0.001  -0.002 0.002  -0.003 0.003 
 (-0.37) (0.51)  (-0.51) (0.84)  (-0.16) (0.79)  (-0.39) (0.44)  (-0.22) (0.74)  (-0.43) (0.90) 
(continued on next page)                
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 (1)  (2)  (3)  (4)  (5)  (6) 
(continued from previous page)         
Log total assets  -0.058***        -0.054*** 
   (-10.36)        (-9.21) 
Log leverage  0.045***        0.040*** 
   (8.61)        (7.49) 
IG rating  -0.009*        -0.010 
   (-1.71)        (-1.81) 
SG rating  -0.002        -0.000 
   (-0.58)        (-0.00) 
Market-to-book  -3.308***        -3.071*** 
   (-6.90)        (-5.79) 
Return on assets  -0.003        -0.004 
   (-0.54)        (-0.64) 
Log analysts  -0.031***        -0.021*** 
   (-9.70)        (-7.29) 
MF ownership    -0.085***    -0.084***  -0.013 
     (-3.54)    (-3.43)  (-0.3) 
Inst. ownership    -0.162***    -0.173***  -0.103*** 
     (-9.82)    (-10.02)  (-6.51) 
Mfflow      0.078**  0.071**  0.073** 
       (2.43)  (2.29)  (2.23) 
Mfflow  compl.      -0.000  -0.000  -0.000 
       (-0.91)  (-0.95)  (-1.01) 
N 352,870  340,084  352,870  325,817  325,817  315,293 
adj. R2 0.153  0.170  0.160  0.163  0.172  0.182 
Firm & qtr. f.e. Yes  Yes  Yes  Yes  Yes  Yes 
Reversal [1, 4] 0.033** 0.016**  0.031** 0.019***  0.042** 0.018**  0.035** 0.018**  0.044*** 0.019**  0.035** 0.019** 
 (2.01) (2.25)  (2.02) (2.67)  (2.56) (2.45)  (2.17) (2.37)  (2.72) (2.55)  (2.35) (2.63) 
Reversal [1, 8] 0.042* 0.014*  0.038* 0.021**  0.056** 0.017**  0.044** 0.015*  0.058** 0.019**  0.044** 0.022** 
 (1.89) (1.69)  (1.83) (2.50)  (2.53) (2.21)  (1.99) (1.75)  (2.61) (2.24)  (2.15) (2.43) 
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Table III: Cross-sectional tests for Return Spillover Effect 
This table reports results from estimating regressions of quarterly returns on PEER dummies that flag peers for fire sale events. For example, the PEER(t=4) dummy 
equals one for all peer firms of a firm that experienced a fire sale 4 quarters ago (and that did not themselves experience a fire sale in the previous or subsequent 8 
quarters). All regressions include dummies from t=-16 to t=16; for brevity we only show the coefficients for t=-2 to t=8. Firm and quarter fixed effects are included in 
all specifications. To focus on how the return spillover effect varies across different firm and fire sale-peer relationship characteristics, stock-quarter observations with 
fire sales in the preceding or succeeding eight quarters are excluded. Panel A shows results for sample splits: In columns 1 and 2, stocks are split along the median of 
firms’ total assets. In columns 3 and 4, stocks are split into firms with an investment grade rating and others. In columns 5 and 6, stocks are split for whether they are 
a constituent of the S&P 500 index or not. In columns 7 and 8, stocks are split along the median of analyst coverage. In columns 9 and 10, stocks are split along the 
median of analysts’ average forecast error. Panel B shows cross-sectional tests for different fire sale-peer relationship characteristics. Since these characteristics are 
defined only for peer stocks in relation to the fire sale stocks to which they are linked, these tests cannot take the form of a sample split. Rather, peers are grouped based 
on a specific fire sale-peer relationship characteristic and then different sets of event-time dummies are included for each peer group in the same regression. In 
specification 1, peers are categorized into two groups based on the severity of the fire sale effect (in terms of the drop in raw return for the associated fire sale stock). 
In specification 2, peers are categorized into two groups based on the peer score given in the TNIC data. In specification 3, peers are categorized into two groups based 
on whether they are linked with a fire sale stock that has less or more than ten peers. In specification 4, peers are categorized into two groups based on their return 
correlation with the fire stock to which they are linked. In specification 5, peers are categorized into two groups based on the turnover-volatility correlation of their 
stock returns. [Banerjee (2011) shows that investors in stocks with a high turnover-volatility correlation condition on prices more.] The return correlation between peer 
and fire sale stocks as well as the turnover-volatility correlation of peer stocks are estimated using daily return data in the 8 quarters prior to the fire sale. All variables 
are defined in Appendix A. Standard errors are double-clustered at the firm and quarter level. t-statistics are reported below coefficient estimates in parentheses. For 
each sample split, we report the t-statistic of the difference in the PEER(t=0) coefficient. At the bottom of the table, we further report the sum of the PEER dummy 
coefficients for windows [1, 4] and [1, 8], respectively, together with the corresponding t-statistic for the cumulated return reversal. *, **, *** indicate statistical 
significance at the 10%, 5%, and 1% levels. 
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Panel A: Sample splits by firm characteristics  
 
 Firm size Rating S&P 500 member Analyst coverage Average forecast error 
 Small Large Other IG No Yes Low High High Low 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Event-time PEER PEER PEER PEER PEER PEER PEER PEER PEER PEER 

t = -2 -0.000 -0.000 -0.000 0.000 -0.000 0.001 0.000 -0.002 0.004 -0.005 
 (-0.02) (-0.02) (-0.01) (0.15) (-0.00) (0.15) (0.09) (-0.57) (0.89) (-1.20) 
t = -1 -0.010 -0.004 -0.009 -0.004 -0.009 -0.005 -0.009 -0.009** -0.007 -0.012** 
 (-1.33) (-1.33) (-1.54) (-1.44) (-1.51) (-1.48) (-1.30) (-2.23) (-1.22) (-2.39) 

t = 0 -0.024*** -0.013*** -0.021*** -0.006** -0.020*** -0.009*** -0.025*** -0.015*** -0.024*** -0.012*** 
 (-3.81) (-3.84) (-4.25) (-2.06) (-4.24) (-2.74) (-4.36) (-3.96) (-4.20) (-2.95) 
t = 1 -0.002 0.000 0.000 -0.001 -0.000 0.002 0.002 -0.001 0.002 0.000 

 (-0.40) (0.12) (0.01) (-0.42) (-0.08) (0.53) (0.48) (-0.23) (0.53) (0.11) 
t = 2 0.000 0.002 0.002 0.002 0.002 0.001 -0.003 0.003 -0.001 0.005 
 (0.07) (0.58) (0.48) (0.61) (0.46) (0.39) (-0.62) (0.99) (-0.21) (1.20) 

t = 3 0.002 0.002 0.004 -0.000 0.004 0.001 0.007 0.001 0.002 -0.002 
 (0.32) (0.57) (0.84) (-0.13) (0.78) (0.25) (1.27) (0.36) (0.48) (-0.38) 
t = 4 0.005 0.006 0.006 0.002 0.006 0.006 0.007 0.006* 0.007 0.008* 

 (0.72) (1.53) (1.36) (0.66) (1.26) (1.31) (1.41) (1.87) (1.32) (1.97) 
t = 5 0.003 -0.004 -0.002 -0.003 -0.002 -0.004 0.001 -0.007* -0.003 -0.010** 
 (0.45) (-1.08) (-0.42) (-0.89) (-0.41) (-1.18) (0.28) (-1.96) (-0.70) (-2.40) 

t = 6 -0.000 0.003 -0.000 0.001 0.001 0.002 -0.000 0.001 -0.003 0.005 
 (-0.03) (0.77) (-0.00) (0.42) (0.14) (0.61) (-0.02) (0.21) (-0.69) (1.03) 
t = 7 0.005 0.000 0.002 -0.002 0.003 -0.001 0.001 0.003 -0.002 0.004 

 (0.91) (0.07) (0.51) (-0.55) (0.71) (-0.33) (0.12) (0.99) (-0.37) (1.02) 
t = 8 -0.001 0.003 0.001 0.002 0.001 0.004 -0.002 0.003 0.006 0.001 
 (-0.14) (0.98) (0.27) (0.57) (0.19) (1.17) (-0.62) (0.97) (1.32) (0.15) 

t-statistic of 
difference 

2.06** 2.71*** 2.61** 1.93* 2.50** 

N 89,957 90,175 163,461 25,260 164,587 24,166 103,736 84,014 57,393 57,255 
adj. R2 0.144 0.199 0.144 0.279 0.141 0.278 0.125 0.232 0.169 0.191 
Firm & quart. f.e. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Reversal [1, 4] 0.005 0.010 0.012 0.002 0.011 0.010 0.014 0.010 0.010 0.011 
 (0.44) (1.39) (1.30) (0.38) (1.19) (1.34) (1.41) (1.28) (1.10) (1.26) 
Reversal [1, 8] 0.011 0.012 0.013 0.000 0.013 0.011 0.014 0.010 0.008 0.011 
 (0.86) (1.43) (1.19) (0.06) (1.22) (1.31) (1.46) (0.96) (0.64) (0.89) 
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Panel B: Cross-sectional tests by peer relationship characteristics  
 
 Severity of fire sale Peerscore # Peers Return correlation Volume-volatility correlation 
 Small Large Small Large ൒ 10 ൏ 10 Low High High Low 
 (1) (2) (3) (4) (5) 
Event-time PEER PEER PEER PEER PEER PEER  PEER PEER PEER PEER 
t = -2 0.002 0.001 0.002 -0.001 -0.000 0.001 0.004 -0.003 -0.001 0.002 
 (0.61) (0.20) (0.60) (-0.23) (-0.06) (0.16) (0.90) (-0.72) (-0.15) (0.52) 
t = -1 0.000 -0.017* -0.007* -0.009 -0.007 -0.011* -0.002 -0.015** -0.009 -0.007 
 (0.01) (-1.79) (-1.80) (-1.26) (-1.47) (-1.82) (-0.40) (-2.41) (-1.34) (-1.58) 
t = 0 0.005 -0.047*** -0.010** -0.030*** -0.017*** -0.021*** -0.012** -0.028*** -0.015*** -0.022*** 
 (0.94) (-5.85) (-2.63) (-4.53) (-3.56) (-4.49) (-2.60) (-4.95) (-3.06) (-5.11) 
t = 1 0.002 -0.001 -0.001 0.002 -0.000 0.001 0.002 -0.001 -0.002 0.003 
 (0.43) (-0.24) (-0.29) (0.43) (-0.05) (0.20) (0.51) (-0.31) (-0.61) (0.79) 
t = 2 -0.002 0.006 0.000 0.004 0.005 -0.004 0.003 0.003 0.005 0.000 
 (-0.71) (0.93) (0.06) (0.85) (1.28) (-0.97) (0.92) (0.67) (1.29) (0.11) 
t = 3 -0.004 0.013* 0.001 0.008 0.004 0.002 0.004 0.004 0.004 0.005 
 (-1.18) (1.87) (0.20) (1.29) (0.92) (0.38) (0.94) (0.73) (0.72) (1.05) 
t = 4 0.004 0.006 0.004 0.006 0.007* 0.002 0.009** -0.001 0.007* 0.002 
 (1.02) (0.89) (1.25) (1.22) (1.67) (0.43) (2.04) (-0.21) (1.85) (0.49) 
t = 5 -0.001 -0.004 -0.001 -0.005 -0.004 0.002 -0.001 -0.002 -0.004 -0.000 
 (-0.28) (-0.70) (-0.18) (-1.07) (-0.91) (0.33) (-0.21) (-0.49) (-0.86) (-0.03) 
t = 6 0.003 -0.004 -0.000 0.001 0.001 -0.002 -0.002 0.003 0.003 -0.004 
 (0.88) (-0.62) (-0.10) (0.23) (0.28) (-0.50) (-0.53) (0.63) (0.63) (-0.76) 
t = 7 -0.004 0.009 0.003 0.003 -0.001 0.009** 0.004 0.005 0.008* -0.000 
 (-0.93) (1.51) (0.88) (0.52) (-0.19) (2.02) (0.82) (1.14) (1.72) (-0.02) 
t = 8 -0.005 0.007 0.001 0.002 0.001 0.003 0.004 0.004 0.001 0.006 
 (-1.08) (1.28) (0.49) (0.56) (0.22) (0.76) (1.07) (0.88) (0.28) (1.36) 
t-statistic of 
difference 

4.92*** 3.44*** 1.11 2.89*** 1.81* 

N 188,776 188,776 188,776 188,776 188,776 
adj. R2 0.150 0.147 0.147 0.147 0.147 
Firm & quart. f.e. Yes Yes Yes Yes Yes 
Reversal [1, 4] -0.001 0.023 0.004 0.020 0.017 0.001 0.019 0.004 0.014 0.010 
 (-0.08) (1.64) (0.64) (1.90) (1.70) (0.10) (1.80) (0.47) (1.53) (1.27) 
Reversal [1, 8] -0.007 0.031 0.008 0.021 0.014 0.012 0.024 0.014 0.022 0.012 
 (-0.93) (1.65) (0.92) (1.66) (1.24) (0.87) (2.01) (0.98) (2.02) (1.27) 
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Table IV: Robustness of Return Spillover Effect 
This table reports results from estimating a reduced variant of equation (1) at the stock-quarter level. Specifically, stock-quarter observations with a fire sale in the 
preceding or succeeding eight quarters are excluded and the main independent variables are PEER dummies that flag peers for fire sale events. For example, the 
PEER(t=4) dummy equals one for all peer firms of a firm that experienced a fire sale 4 quarters ago (and that did not themselves experience a fire sale in the previous 
or subsequent 8 quarters). The dependent variable is the quarterly return. All regressions include dummies from t=-16 to t=16; for brevity we only show the coefficients 
for t=-2 to t=8. All regressions include firm-level controls (logarithm of total assets, logarithm of leverage, investment grade dummy, speculative grade dummy, market-
to-book ratio, return on assets, logarithm of number of analysts), ownership controls (mutual fund ownership, institutional ownership), mutual fund flow controls 
(separately for fire sale funds and others) and fixed effects as specified at the bottom of the table. Specification 1 reports the return spillover effect when all baseline 
controls are included. In specification 2, the liquidity provision proxy is added as an additional control variable. In specification 3, short interest is added as an additional 
control variable. In specification 4, dummies for different mutual fund flow deciles (separately for fire sale funds and others) are used instead of the continuous fund 
flow variables. In specification 5, the fire sale stock share is added as an additional control variable. In column 6, the fire sale fund share is added as an additional 
control variable. In specification 7, capx is added as an additional control variable (for visibility, the capx coefficient is multiplied by 1,000). In specification 8, 
industry×quarter fixed effects (based on the Fama-French 48 industry classification) are used instead of quarter fixed effects. All variables are defined in Appendix A. 
Standard errors are double-clustered at the firm and quarter level. t-statistics are reported below coefficient estimates in parentheses. At the bottom of the table, we 
report the sum of the PEER dummy coefficients for windows [1, 4] and [1, 8], respectively, together with the corresponding t-statistic for the cumulated return reversal. 
*, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 
 

(1) (2) (3) (4) (5) (6) (7) (8)
Event-time PEER  PEER  PEER  PEER  PEER  PEER  PEER  PEER 
t = -2 -0.002  -0.002  -0.002  -0.002  -0.002  -0.002  0.000  0.000 
 (-0.46)  (-0.62)  (-0.45)  (-0.48)  (-0.54)  (-0.46)  (0.09)  (0.17) 
t = -1 -0.007  -0.007  -0.006  -0.007  -0.007  -0.007  -0.007  -0.003 
 (-1.27)  (-1.34)  (-1.26)  (-1.33)  (-1.31)  (-1.27)  (-1.48)  (-0.97) 
t = 0 -0.016***  -0.015***  -0.016***  -0.015***  -0.016***  -0.016***  -0.014***  -0.009*** 
 (-3.74)  (-3.67)  (-3.74)  (-3.73)  (-3.80)  (-3.76)  (-3.80)  (-3.62) 
t = 1 0.002  0.004  0.002  0.002  0.002  0.002  -0.000  -0.001 
 (0.61)  (1.25)  (0.60)  (0.79)  (0.55)  (0.60)  (-0.14)  (-0.50) 
t = 2 0.002  0.004  0.002  0.003  0.002  0.002  0.002  -0.001 
 (0.67)  (1.20)  (0.68)  (0.98)  (0.66)  (0.67)  (0.56)  (-0.55) 
t = 3 0.003  0.005  0.003  0.004  0.003  0.003  0.002  0.001 
 (0.87)  (1.18)  (0.87)  (1.11)  (0.84)  (0.87)  (0.61)  (0.47) 
t = 4 0.008** 0.008** 0.008** 0.008** 0.007** 0.008** 0.007* 0.005*

 (2.04)  (2.14)  (2.04)  (2.22)  (2.00)  (2.04)  (1.97)  (1.92) 
t = 5 -0.002  -0.002  -0.002  -0.001  -0.002  -0.002  -0.000  0.000 
 (-0.51)  (-0.47)  (-0.50)  (-0.33)  (-0.56)  (-0.51)  (-0.05)  (0.09) 
t = 6 0.002  0.002  0.002  0.003  0.002  0.002  0.002  0.001 
 (0.49)  (0.42)  (0.51)  (0.71)  (0.58)  (0.49)  (0.55)  (0.42) 
t = 7 0.004  0.004  0.004  0.005  0.004  0.004  0.005  0.004 
 (1.09)  (1.11)  (1.10)  (1.36)  (1.12)  (1.09)  (1.64)  (1.66) 
t = 8 0.001  0.001  0.001  0.001  0.001  0.001  -0.000  -0.001 
 (0.41)  (0.45)  (0.44)  (0.38)  (0.32)  (0.41)  (-0.02)  (-0.24) 
(continued on next page)               
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 (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8) 
Event-time PEER  PEER  PEER  PEER  PEER  PEER  PEER  PEER 
(continued from previous page)             
Liquidity provision proxy  -0.022***             
   (-2.78)             
Short interest     -0.178**           
     (-2.08)           
Fire sale stock share        1.518***       
         (4.26)       
Fire sale fund share          -0.025     
           (-0.48)     
CAPX             -0.048**   
             (-2.57)   
N 156,891  149,241  156,891  156,891  156,891  156,891  141,186  156,846 
adj. R2 0.195  0.198  0.195  0.211  0.198  0.195  0.215  0.263 
Firm & qtr. f.e. Yes  Yes  Yes  Yes  Yes  Yes  Yes  No 
Firm & ind×qtr f.e. No  No  No  No  No  No  No  Yes 
Firm controls Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes 
Ownership controls Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes 
Flow controls Yes  Yes  Yes  Yes*  Yes  Yes  Yes  Yes 
Reversal [1, 4] 0.015*  0.020**  0.015*  0.018**  0.015*  0.015*  0.010  0.004 
 (1.80)  (2.47)  (1.81)  (2.19)  (1.76)  (1.80)  (1.36)  (0.88) 
Reversal [1, 8] 0.020*  0.025**  0.020*  0.025**  0.020*  0.020*  0.017  0.009 
 (1.84)  (2.34)  (1.88)  (2.33)  (1.81)  (1.84)  (1.60)  (1.28) 
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Table V: Placebo Test for S&P 500 Index Additions 
This table reports results from estimating regressions in the spirit of equation (1) at the stock-day level. The dependent variable is the daily return. The main independent 
variables are AD and PEER dummies that flag S&P 500 index addition events and peers for these addition events, respectively. For example, the FS(t=4) dummy 
equals one when the given firm experienced a fire sale 4 quarters ago and the PEER(t=4) dummy equals one for all peer firms of a firm that experienced a fire sale 4 
quarters ago (and that did not themselves experience a fire sale in the previous or subsequent 8 quarters). All regressions include dummies from t=-25 to t=25; for 
brevity we only show the coefficients for t=-8 to t=8. Firm and day fixed effects are included in all specifications. In specification 2, additional firm-level controls are 
included (logarithm of total assets, logarithm of leverage, investment grade dummy, speculative grade dummy, market-to-book ratio, return on assets, logarithm of 
number of analysts). In specification 3, ownership controls are included (mutual fund ownership, institutional ownership). In specification 4, mutual fund flow controls 
are included (separately for fire sale funds and others). In specification 5, ownership and flow controls are included. In specification 6, firm-level, ownership and flow 
controls are included. All variables are defined in Appendix A. Standard errors are double-clustered at the firm and day level. t-statistics are reported below coefficient 
estimates in parentheses. At the bottom of the table, we report the sum of the AD and PEER dummy coefficients for windows [-4, -1] and [-8, -1], respectively, together 
with the corresponding t-statistic for the cumulated price pressure effect. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 
 
 
 (1)  (2)  (3)  (4)  (5)  (6) 
Event-time AD PEER   AD PEER  AD PEER  AD PEER  AD  PEER  AD  PEER 

t = -8 0.002 -0.000  0.003 -0.001  0.002 -0.000  0.002 -0.000  0.003 -0.000  0.003 -0.000 
 (0.85) (-0.24)  (1.01) (-0.43)  (0.88) (-0.22)  (0.86) (-0.12)  (0.89) (-0.10)  (1.04) (-0.27) 
t = -7 0.003 0.001  0.004* 0.001  0.003 0.002  0.003 0.001  0.003 0.001  0.004* 0.001 
 (1.62) (0.91)  (1.90) (0.88)  (1.65) (0.92)  (1.55) (0.79)  (1.58) (0.81)  (1.87) (0.78) 
t = -6 -0.000 -0.000  -0.000 -0.000  -0.000 -0.000  -0.001 -0.000  -0.000 -0.000  -0.000 -0.000 
 (-0.21) (-0.15)  (-0.09) (-0.13)  (-0.18) (-0.13)  (-0.22) (-0.13)  (-0.19) (-0.11)  (-0.09) (-0.04) 
t = -5 0.006*** 0.001  0.006*** 0.001  0.006*** 0.001  0.006*** 0.000  0.006*** 0.000  0.006*** 0.001 
 (2.81) (0.46)  (2.93) (0.58)  (2.84) (0.47)  (2.66) (0.28)  (2.69) (0.31)  (2.79) (0.47) 
t = -4 0.009*** 0.003  0.010*** 0.003  0.010*** 0.003  0.010*** 0.002  0.010*** 0.002  0.010*** 0.003 
 (3.61) (1.49)  (3.70) (1.64)  (3.63) (1.50)  (3.60) (1.35)  (3.62) (1.37)  (3.70) (1.50) 
t = -3 0.008*** -0.000  0.008*** -0.000  0.008*** -0.000  0.008*** -0.000  0.008*** 0.000  0.008*** -0.000 
 (2.92) (-0.06)  (3.08) (-0.05)  (2.96) (-0.05)  (2.87) (-0.01)  (2.90) (0.00)  (3.04) (-0.03) 
t = -2 0.010*** -0.001  0.010*** -0.000  0.010*** -0.001  0.010*** -0.001  0.010*** -0.001  0.010*** -0.001 
 (4.20) (-0.63)  (4.33) (-0.36)  (4.22) (-0.61)  (4.15) (-0.59)  (4.17) (-0.56)  (4.30) (-0.40) 
t = -1 0.017*** 0.002  0.017*** 0.002  0.018*** 0.002*  0.017*** 0.002*  0.017*** 0.002*  0.017*** 0.002 
 (5.31) (1.66)  (5.20) (1.33)  (5.32) (1.68)  (5.15) (1.67)  (5.16) (1.69)  (5.05) (1.33) 
(continued on next page)                 
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 (1)  (2)  (3)  (4)  (5)  (6) 
Event-time AD PEER   AD PEER  AD  PEER  AD  PEER  AD  PEER  AD  PEER 
(continued from previous page)                
t = 0 -0.006*** -0.001  -0.006** -0.002  -0.006*** -0.001  -0.006*** -0.002  -0.006*** -0.002  -0.006*** -0.002 
 (-2.72) (-0.99)  (-2.57) (-1.15)  (-2.71) (-0.97)  (-2.83) (-1.11)  (-2.83) (-1.09)  (-2.68) (-1.20) 
t = 1 -0.003 -0.001  -0.003 -0.001  -0.003 -0.001  -0.003 -0.001  -0.003 -0.001  -0.003 -0.001 
 (-1.66) (-0.73)  (-1.61) (-0.63)  (-1.65) (-0.71)  (-1.65) (-0.87)  (-1.64) (-0.85)  (-1.59) (-0.82) 
t = 2 -0.005** -0.002  -0.005** -0.001  -0.005** -0.002  -0.005* -0.002  -0.005* -0.002  -0.005** -0.001 
 (-2.05) (-1.32)  (-2.13) (-1.09)  (-2.04) (-1.30)  (-1.97) (-1.33)  (-1.96) (-1.30)  (-2.03) (-1.03) 
t = 3 0.001 -0.000  0.001 -0.000  0.001 -0.000  0.001 -0.000  0.001 -0.000  0.001 -0.000 
 (0.53) (-0.16)  (0.68) (-0.22)  (0.54) (-0.13)  (0.55) (-0.30)  (0.55) (-0.27)  (0.71) (-0.32) 
t = 4 -0.002 0.000  -0.001 0.000  -0.002 0.000  -0.002 0.000  -0.002 0.000  -0.001 0.000 
 (-0.95) (0.35)  (-0.63) (0.27)  (-0.94) (0.38)  (-0.99) (0.45)  (-0.99) (0.48)  (-0.65) (0.39) 
t = 5 -0.004 0.001  -0.003 0.001  -0.004 0.001  -0.004* 0.001  -0.004* 0.001  -0.004 0.001 
 (-1.65) (0.90)  (-1.49) (0.88)  (-1.65) (0.92)  (-1.81) (0.90)  (-1.81) (0.92)  (-1.65) (0.88) 
t = 6 -0.001 0.001  -0.001 0.001  -0.001 0.001  -0.001 0.001  -0.001 0.001  -0.001 0.001 
 (-0.73) (1.00)  (-0.60) (1.07)  (-0.72) (1.02)  (-0.78) (0.99)  (-0.78) (1.02)  (-0.64) (1.12) 
t = 7 -0.001 0.001  -0.001 0.000  -0.001 0.001  -0.001 0.001  -0.001 0.001  -0.001 0.001 
 (-0.42) (0.33)  (-0.35) (0.22)  (-0.41) (0.35)  (-0.42) (0.46)  (-0.42) (0.48)  (-0.35) (0.35) 
t = 8 0.002 0.001  0.002 0.000  0.002 0.001  0.002 0.001  0.002 0.001  0.002 0.000 
 (0.89) (0.39)  (0.84) (0.15)  (0.89) (0.41)  (0.96) (0.49)  (0.96) (0.52)  (0.91) (0.26) 
N 17,739,694  17,035,338  17,739,694  15,953,631  15,953,631  15,442,302 
adj. R2 0.002  0.003  0.002  0.003  0.003  0.093 
Firm & date f.e. Yes  Yes  Yes  Yes  Yes  Yes 
Firm controls No  Yes  No  No  No  Yes 
Own. Controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
Run-up [-4, -1] 0.044*** 0.004  0.045*** 0.004  0.045*** 0.004  0.044*** 0.004  0.044*** 0.004  0.045*** 0.004 
 (8.12) (1.34)  (8.24) (1.44)  (8.16) (1.37)  (7.96) (1.34)  (7.98) (1.38)  (8.10) (1.37) 
Run-up [-8, -1] 0.056*** 0.005  0.058*** 0.006  0.056*** 0.005*  0.055*** 0.005  0.055*** 0.005  0.057*** 0.005 
 (7.34) (1.63)  (7.68) (1.66)  (7.40) (1.69)  (7.19) (1.49)  (7.24) (1.57)  (7.55) (1.54) 
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Table VI: Liquidity Spillover Effect 
This table reports results from estimating equation (1) at the stock-quarter level. In Panel A, the dependent variable is the average bid-ask spread (multiplied by 100). 
In Panel B, the dependent variable is the natural logarithm of the average Amihud ratio (scaled by 1,000,000). In Panel C, the dependent variable is the Probability of 
Informed Trading (PIN) estimated at quarterly frequency. In Panel D, the dependent variable is the natural logarithm of share turnover. The main independent variables 
are FS and PEER dummies that flag fire sale events and peers for fire sale events, respectively. For example, the FS(t=0) dummy equals one when the given firm 
experienced a fire sale in a given quarter and the PEER(t=0) dummy equals one for all peer firms of a firm that experienced a fire sale in that quarter (and that did not 
themselves experience a fire sale in the previous or subsequent 8 quarters). All regressions include dummies from t=-16 to t=16; for brevity we only show the coefficients 
for t=0. Firm and quarter fixed effects are included in all specifications. In specification 2, additional firm-level controls are included (logarithm of total assets, logarithm 
of leverage, investment grade dummy, speculative grade dummy, market-to-book ratio, return on assets, logarithm of number of analysts). In specification 3, ownership 
controls are included (mutual fund ownership, institutional ownership). In specification 4, mutual fund flow controls are included (separately for fire sale funds and 
others). In specification 5, ownership and flow controls are included. In specification 6, firm-level, ownership and flow controls are included. All variables are defined 
in Appendix A. Standard errors are double-clustered at the firm and quarter level. T-statistics are reported below coefficient estimates in parentheses. *, **, *** indicate 
statistical significance at the 10%, 5%, and 1% levels. 
 
Panel A: Bid-ask spreads  
 
 (1)  (2)  (3)  (4)  (5)  (6) 
Event-time FS PEER   FS PEER FS PEER FS PEER FS PEER FS PEER 
t = 0 0.154*** 0.043*  0.160*** 0.039*  0.173*** 0.039*  0.156*** 0.081***  0.176*** 0.075***  0.152*** 0.068*** 
 (3.63) (1.94)  (3.88) (1.91)  (4.02) (1.74)  (3.00) (5.29)  (3.37) (4.94)  (3.01) (4.88) 
N 352,250  339,481  352,250  325,224  325,224  314,711 
adj. R2 0.677  0.689  0.679  0.663  0.666  0.677 
Firm & quart. f.e. Yes  Yes  Yes  Yes  Yes  Yes 
Firm controls No  Yes  No  No  No  Yes 
Own. controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
 
 
Panel B: Log Amihud  
 
 (1)  (2)  (3)  (4)  (5)  (6) 
Event-time FS PEER   FS  PEER  FS  PEER  FS  PEER  FS  PEER  FS  PEER 
t = 0 0.311*** 0.084***  0.331*** 0.075***  0.407*** 0.069***  0.305*** 0.096***  0.391*** 0.077***  0.352*** 0.065*** 

 (8.45) (5.25)  (9.94) (5.94)  (11.89) (4.68)  (8.47) (5.84)  (11.56) (4.97)  (11.04) (5.12) 
N 352,863  340,078  352,863  325,817  325,817  315,293 
adj. R2 0.863  0.903  0.884  0.858  0.881  0.905 

Firm & quart. f.e. Yes  Yes  Yes  Yes  Yes  Yes 

Firm controls No  Yes  No  No  No  Yes 
Own. controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
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Panel C: PIN 
 
 (1)  (2)  (3)  (4)  (5)  (6) 
Event-time FS PEER   FS  PEER  FS  PEER  FS  PEER  FS  PEER  FS  PEER 
t = 0 0.009*** 0.002**  0.010*** 0.002**  0.013*** 0.002**  0.008*** 0.002**  0.011*** 0.002*  0.009*** 0.001* 

 (5.00) (2.20)  (5.47) (2.48)  (7.39) (2.02)  (4.26) (2.23)  (6.48) (1.91)  (5.79) (1.78) 
N 271,148  262,086  271,148  256,029  256,029  247,998 
adj. R2 0.574  0.601  0.588  0.576  0.592  0.609 

Firm & quart. f.e. Yes  Yes  Yes  Yes  Yes  Yes 

Firm controls No  Yes  No  No  No  Yes 
Own. controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
 
 
Panel D: Log turnover 
 
 (1)  (2)  (3)  (4)  (5)  (6) 
Event-time FS PEER   FS  PEER  FS  PEER  FS  PEER  FS  PEER  FS  PEER 
t = 0 -0.318*** -0.032***  -0.317*** -0.031***  -0.351*** -0.027***  -0.286*** -0.034***  -0.316*** -0.028***  -0.307*** -0.028*** 

 (-19.31) (-3.91)  (-19.63) (-4.00)  (-22.59) (-3.40)  (-17.50) (-4.20)  (-20.59) (-3.55)  (-20.34) (-3.58) 
N 342,642  330,256  342,642  316,221  316,221  306,062 
adj. R2 0.671  0.687  0.686  0.673  0.690  0.698 

Firm & quart. f.e. Yes  Yes  Yes  Yes  Yes  Yes 

Firm controls No  Yes  No  No  No  Yes 
Own. controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
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Appendix A: Definition of Variables 
	
Variable	name	 Source	 Definition	
Return	 CRSP	 Quarterly	compounded	return.
Bid‐ask	spread	 CRSP	 Difference	between	closing	bid	and	ask	prices,	divided	by	the	mid‐

price.	Daily	observations	averaged	quarterly.	
Log	Amihud	 CRSP	 Natural	logarithm	of	the	average	ratio	of	absolute	returns	over	dollar	

volume	multiplied	by	one	million.		
PIN	 Stephen	Brown	 Probability	of	informed	trading	(Easley	et	al.,	1996)	estimated	at	

quarterly	frequency.	Data	available	at:	
http://scholar.rhsmith.umd.edu/sbrown/pin‐data		

Turnover	 CRSP	 Turnover	is	the	total	dollar	volume	in	the	quarter	divided	by	the	
market	capitalization	at	the	end	of	the	previous	quarter.	

Log	turnover		 CRSP	 Log turnover is the natural logarithm of one plus turnover.	
S&P	500	member	 CRSP	 Dummy	equal	to	one	if	the	stock	is	a	current	constituent	of	the	S&P	

500	index.	
Total	assets	 Compustat Total	assets	from	the	previous	fiscal	year.
Log	total	assets	 Compustat	 Log	total	assets	is	the	logarithm	of	total	assets	from	the	previous	fiscal	

year.	
Leverage	 Compustat Leverage	is	the	ratio	of	long‐term	debt	and	current	liabilities	over	

stockholders’	equity	at	the	end	of	the	previous	fiscal	year.	
Log	leverage	 Compustat Log leverage is the natural logarithm of one plus leverage.	
Investment	grade	
Speculative	grade	

Compustat	 Investment	(speculative)	grade	is	a	dummy	variable	that	indicates	
whether	a	firms	long‐term	debt	has	an	investment	grade	(speculative	
grade)	rating	given	by	Standard&Poors.	

Market‐to‐book	 Compustat	 Market‐to‐book	is	the	ratio	of	the	stock’s	market	capitalization	at	the	
end	of	the	previous	quarter	over	the	stockholders’	equity.	

Return	on	assets	 Compustat	 Return	on	assets	as	reported	for	the	previous	fiscal	year.	
Num.	analysts	 I/B/E/S	 Num.	analysts	is	the	number	of	analysts	following	a	stock	and/or	

issuing	recommendations	at	the	end	of	the	previous	quarter.	
Log	analysts	 I/B/E/S	 Log analysts is the natural logarithm of one plus the number of analysts.
Average	absolute	
forecast	error	

I/B/E/S	 Absolute	forecast	error	for	analysts’	one	year ahead	EPS	forecasts	
averaged	over	the	previous	five	fiscal	years.			

Mutual	fund	
ownership	

Thomson	Reuters	
S12	

Mutual	fund	ownership	is	the	fraction	of	shares	outstanding	owned	by	
open‐ended	mutual	funds	at	the	end	of	the	previous	quarter.	

Inst.	ownership	 Thomson	Reuters	
S34	

Institutional	ownership	is	the	fraction	of	shares	outstanding	owned	
by	institutional	investors	at	the	end	of	the	previous	quarter.	

Mfflow		 S12	/	CRSP		
MF	database	

Mfflow is	the	selling	pressure	by	mutual	funds	experiencing	a	fire	sale	
as	defined	in	Edmans	et	al.	(2012).	See	Appendix	B	for	details.	

Mfflow	
complement	

S12	/	CRSP		
MF	database	

Mfflow	complement is	the	difference	between	mutual	fund	trading	
pressure	by	all	mutual	funds	and	the	selling	pressure	by	fire‐selling	
mutual	funds.	See	Appendix	B	for	details.	

Liquidity	
provision	proxy	

	

S12	/	CRSP		
MF	database	

For	each	stock,	we	calculate	the	aggregated	dollar	selling	volume	in	
that	stock	by	its	current	fund	owners	and	their	simultaneous	
aggregate	dollar	buy	volume	in	peer	stocks	experiencing	a	fire	sale.	
We	then	take	the	minimum	of	those	two	numbers	to	measure	liquidity	
provision	by	current	owners	to	fire	sale	funds.	The	measure	is	not	
defined	for	fire	sale	stocks.	Because	values	are	very	small,	we	multiply	
the	measure	by	1,000,000	for	better	visibility.	

Short	interest	 Compustat	 We	average	the	number	of	shares	held	short	each	month	(obtained	
from	the	Supplemental	Short	Interest	file)	in	a	given	quarter,	and	
scale	by	the	total	number	of	shares	outstanding.	

Fire	sale	fund	
share	

S12	/	CRSP		
MF	database	

Fraction	of	holdings	by	current	owners	invested	in	fire	sale	stocks.	
The	measure	is	not	defined	for	fire	sale	stocks.	

Fire	sale	stock	
share	

	 Fraction	of	shares	outstanding	owned	by	fire	sale	funds	(i.e.,	funds	
with	flow	<	‐5%).	The	measure	is	not	defined	for	fire	sale	stocks.	

CAPX	 Compustat	 Quarterly	capital	expenditures,	scaled	by	lagged	property,	plant	and	
equipment.	
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Appendix B: Construction of the Edmans et al. (2012) Mfflow measure 

We	compute	the	mutual	fund	selling	pressure	proxy	for	each	stock	as	in	Edmans	et	al.	(2012).	The	same	
approach	is	also	used	in	Dessaint	et	al.	(2016).	We	start	from	the	sample	of	open‐ended	U.S.	equity	mutual	
funds	 contained	 in	 the	 CRSP	 Mutual	 Fund	 Database.	 We	 exclude	 sector	 funds	 (third	 letter	 of	 CRSP	
objective	 code	 equal	 to	 “S”)—as	 they	 could	 suffer	 from	 reverse	 causality—and	drop	 all	 international,	
municipal,	bond	and	metal	funds	(investment	objective	codes	1,	5,	6,	8).		

For	all	remaining	funds,	we	find	monthly	total	net	assets	(TNA)	and	returns	(ret).	We	then	compute	

௝,௧ݓ݋݈݂ ൌ 	
ሺܶܰܣ௝,௧ െ ൫1 ൅ ௧,௝൯ݐ݁ݎ ∗ ௝,௧ିଵሻܣܰܶ

௝,௧ିଵܣܰܶ
	

at	quarterly	frequency	and	construct	the	mfflow	measure	as	

௜,௧ݓ݋݈݂݂݉ ൌ ෍݂݈ݓ݋௝,௧ ∗
௜,௝,௧ିଵݏ݁ݎ݄ܽݏ ∗ ௜,௧ିଵܿݎ݌

௜,௧݈݋ݒ

ெ

௝ୀଵ

	

using	only	the	funds	j	which	have	flow<‐5%	(called	“fire	sale	funds”).	ݏ݁ݎ݄ܽݏ௜,௝,௧ିଵ	is	the	number	of	shares	
of	company	i	owned	by	fund	j	in	quarter	t‐1.	ሺݏ݁ݎ݄ܽݏ௜,௝,௧ିଵ ∗ 	investment	of	value	total	the	gives	௜,௧ିଵሻܿݎ݌
held	 in	 company	 i	 by	 fund	 j	 in	 quarter	 t‐1.	݂݈ݓ݋௝,௧ ∗ ሺݏ݁ݎ݄ܽݏ௜,௝,௧ିଵ ∗ ௜,௧ିଵሻܿݎ݌ 	gives	 the	 “hypothetical”	
selling	volume	(in	dollars)	by	fire	sale	fund	j.	We	then	sum	this	hypothetical	selling	volume	over	all	fire	
sale	funds	and	scale	by	trading	volume	(in	dollars)	to	obtain	the	mfflow	measure.	Finally,	we	designate	
stock‐quarter	observations	in	the	bottom	decile	of	mfflow	as	“fire	sale”	events.		

Using	 “hypothetical”	 rather	 than	 actual	 sales	 immunizes	 our	 approach	 against	 selection	 concerns	
stemming	 from	 funds’	 endogenous	 decisions	 to	 sell	 particular	 portfolio	 stocks	 as	 opposed	 to	 others	
(Huang	et	al.,	2016).	Scaling	by	dollar	volume	singles	out	 fire	sale	 events	where	mutual	 funds’	 selling	
pressure	makes	up	a	large	fraction	of	the	overall	trading	volume,	ensuring	a	large	price	impact.	

Finally,	as	a	control	variable,	we	also	construct	݂݂݈݉ݓ݋	ݐ݈݊݁݉݁݌݉݋ܿ௜,௧	as	the	sum	of	hypothetical	fund	
sales	(and/or	purchases)	over	mutual	funds	with	flow>‐5%	(non‐fire	sale	funds).		
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Appendix	A:	A	Multi‐Asset	NREE	Model	

In	 this	 appendix,	 we	 present	 the	 solution	 to	 a	 plain‐vanilla	 NREE	 model	 with	 two	 risky	 stocks	
(Grossman,	1976;	Hellwig,	1980;	Admati,	1985).	Our	aim	is	to	show	how	the	empirical	predictions	
regarding	price	and	liquidity	spillovers	naturally	arise	in	a	standard	model	of	cross‐asset	learning.	
The	model	is	a	simplified	version	of	Admati	(1985).	

Setup:	 Trading	 takes	 place	 at	ݐ ൌ 0	and	 payoffs	 are	 realized	 at	ݐ ൌ 1.	 There	 is	 a	 riskless	 asset	 in	
infinitely	elastic	supply	with	a	gross	return	normalized	to	one	and	there	are	two	risky	stocks	that	pay	
off	

൬
ଵߠ
ଶߠ
൰~ܰ ൭൬̅ߠ

ߠ̅
൰ , ቆ

ఏߪ
ଶ ఏߪߩ

ଶ

ఏߪߩ
ଶ ఏߪ

ଶ ቇ൱	.	

Here,	̅ߠ	is	the	expected	payoff	of	a	given	stock,	ߪఏ
ଶ	is	the	variance	of	the	payoff,	and	ߩ ∈ ሾെ1,1ሿ	is	the	

correlation	between	the	payoffs	of	the	two	stocks.	

There	 is	a	unit‐mass	of	 investors	with	CARA	utility	that	maximize	the	expected	utility	of	terminal	
wealth.	Investors	are	assumed	to	have	the	same	risk	tolerance	ߛ ൐ 0.	Each	investor	݅	receives	a	pair	
of	signals	about	the	two	stocks:	

ቀ
ଵ௜ݏ
ଶ௜ݏ
ቁ ൌ ൬

ଵߠ
ଶߠ
൰ ൅ ቀ

ଵ௜ߝ
ଶ௜ߝ
ቁ 			where			 ቀ

ଵ௜ߝ
ଶ௜ߝ
ቁ~ܰ ൭ቀ0

0
ቁ , ൬

ఌଶߪ 0
0 ఌଶߪ

൰൱		

Signal	 errors	 are	 assumed	 to	 be	 independent	 across	 investors.	 Thus,	 investors	 have	 dispersed	
information	and	try	to	learn	about	other	investors’	signals	from	the	equilibrium	prices.	To	prevent	
prices	from	being	fully	revealing,	the	asset	supply	of	the	two	stocks	is	assumed	to	be	random:	

	ቀ
ଵݖ
ଶݖ
ቁ~ܰ൭ቀ̅ݖ

̅ݖ
ቁ , ቆ

௭ଵߪ
ଶ 0
0 ௭ଶߪ

ଶ ቇ൱	

An	 equilibrium	 is	 obtained	 when	 (1)	 investors	 choose	 optimal	 demands	 given	 their	 beliefs	
conditional	 on	 their	 respective	 information	 sets	ሼݏଵ௜, ,ଶ௜ݏ ,ଵ݌ 	and	ଶሽ݌ (2)	markets	 clear	 given	 these	
optimal	demands.		

Matrix	notation:	For	notational	convenience,	the	model	solution	is	given	in	matrix	notation.	Let	ࣂ	
denote	 the	 vector	 of	 payoff	 realizations,	ࣂഥ	be	 the	 vector	 of	 expected	 payoffs,	࢏ࢿ 	be	 the	 vector	 of	
investor	݅’s	signal	errors,	ࢠ	be	the	vector	of	realized	stock	supplies,	and	ࢠത	be	the	vector	of	average	
(expected)	stock	supplies.	Let	the	variance‐covariance	matrixes	of	,ࣂ	࢏ࢿ,	and	ࢠ	be	given	by	,ࢂ	ࡿ,	and	
࢖	Let	respectively.	,ࢁ ൌ ሺ݌ଵ 	the	define	to	useful	is	it	Finally,	prices.	equilibrium	of	vector	the	be	ଶሻᇱ݌
matrix	ࡽ ≡ 		.ଵିࡿߛ

Theorem	(Admati,	1985):	There	exists	a	unique	linear	rational	expectations	equilibrium	price	of	the	
form	࢖ ൌ ࡭ ൅ ࣂ࡮ െ 	where	ࢠ࡯

࡭ ൌ ଵିࢂߛሺߛ ൅ ࡽଵିࢁࡽߛ ൅ ഥࣂଵିࢂሻିଵሺࡽ ൅ 	,	തሻࢠଵିࢁࡽ

࡮ ൌ ሺିࢂߛଵ ൅ ࡽଵିࢁࡽߛ ൅ ࡽሻିଵሺࡽ ൅ 	,	ሻࡽଵିࢁࡽߛ

࡯ ൌ ሺିࢂߛଵ ൅ ࡽଵିࢁࡽߛ ൅ ࡵሻିଵሺࡽ ൅ 	.	ଵሻିࢁࡽߛ

Proof:	See	Admati	(1985).	 	
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Matrix	࡯	plays	an	important	role	for	the	arguments	to	follow	as	it	governs	how	the	equilibrium	prices	
respond	to	changes	in	asset	supplies—like	from	a	fire	sale—and	thus	captures	price	impact—i.e.,	the	
sensitivity	of	the	price	to	a	(hypothetical)	trade	of	one	share.	Given	the	structure	imposed	on	,ࢂ	ࢁ	
and	ࡽ,	we	can	apply	simple	matrix	algebra	to	derive	

࡯ ൌ ቂ
ܿଵଵ ܿଵଶ
ܿଶଵ ܿଶଶ

ቃ	,	

ܿଵଵ ൌ
1
ܿ̅
ቆ1 ൅

ଶߛ

௭ଵߪ
ଶ ఌଶߪ

ቇ ቆ
ଶߛ

௭ଶߪ
ଶ ఌସߪ

൅
1

ఌଶߪ
൅

1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ	 ,	

ܿଵଶ ൌ
ߩ

ఏߪ̅ܿ
ଶሺ1 െ ଶሻߩ

ቆ1 ൅
ଶߛ

௭ଶߪ
ଶ ఌଶߪ

ቇ	,	

ܿଶଵ ൌ
ߩ

ఏߪ̅ܿ
ଶሺ1 െ ଶሻߩ

ቆ1 ൅
ଶߛ

௭ଵߪ
ଶ ఌଶߪ

ቇ	,	

ܿଶଶ ൌ
1
ܿ̅
ቆ1 ൅

ଶߛ

௭ଶߪ
ଶ ఌଶߪ

ቇ ቆ
ଶߛ

௭ଵߪ
ଶ ఌସߪ

൅
1

ఌଶߪ
൅

1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ	 ,	

with			ܿ̅ ൌ ߛ ቆ
ଶߛ

௭ଵߪ
ଶ ఌସߪ

൅
1

ఌଶߪ
൅

1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ ቆ
ଶߛ

௭ଶߪ
ଶ ఌସߪ

൅
1

ఌଶߪ
൅

1

ఏߪ
ଶሺ1 െ ଶሻߩ

ቇ െ
ߛଶߩ

ఏߪ
ସሺ1 െ ଶሻଶߩ

	.	

The	following	corollary	follows	immediately:	

Corollary:	Given	the	structure	imposed	on	,ࢂ	ࢁ	and	ࡽ,	all	elements	of	matrix	C	are	strictly	positive	
and	 ௝ܿ௝	is	increasing	in	ߪ௭൓௝

ଶ 	for	݆ ∈ ሼ1,2ሽ.	

Note	 that	 this	 corollary	 depends	 on	 the	 assumptions	 that	 asset	 supplies	 and	 signal	 errors	 are	
assumed	to	be	independent	across	stocks.	Admati	(1985)	shows	that,	when	these	assumptions	and	
especially	the	one	about	independent	supplies	do	not	hold,	counterintuitive	results	are	possible.	We	
feel,	however,	that	these	assumptions	are	intuitively	justified	as	a	large	body	of	empirical	evidence	
shows	that	uninformed	(noise)	trading	is	associated	with	idiosyncratic	volatility	(e.g.,	Brandt	et	al.,	
2010;	Foucault	et	al.,	2011)—suggesting	that	asset	supply	shocks	are	not	much	correlated.	We	also	
emphasize	 that	 these	 assumptions	are	 shared	with	 a	 large	bulk	of	 the	 theoretical	 literature	 (e.g.,	
Veldkamp,	2006;	Cespa	and	Foucault,	2014).	

Fire	sales:	A	fire	sale	can	be	thought	of	as	having	two	distinct	effects	in	our	model.	First	and	foremost,	
a	fire	sale	can	be	interpreted	as	a	sudden	increase	in	the	asset	supply	realization	of	one	stock.	Second,	
a	fire	sale	may	also	indirectly	affect	equilibrium	by	increasing	the	perceived	uncertainty	about	asset	
supply	shocks.		

Intuitively,	an	increase	in	ߪ௭௝
ଶ ,	the	variance	of	supply	shocks,	reduces	the	signal‐to‐noise	ratio	of	stock	

݆’s	price	signal,	and	thereby	reduces	the	price	informativeness	of	the	fire	sale	stock.	To	see	this	in	our	
model,	note	 that	 the	variance	of	 the	price	 signal	depends	on	 the	variance	of	 the	 term	ሺ ௝ܿ௝ ௝ܾ௝ሻݖ௝⁄ ,	
which	can	be	shown	to	be	increasing	in	ߪ௭௝

ଶ .	In	the	context	of	our	model,	the	increase	in	ߪ௭௝
ଶ 	can	be	

rationalized	by	noting	that	fire	sales	can	be	understood	as	a	sequence	of	serially	correlated	noise	
shocks.	An	extreme	noise	realization	in	one	period	will	then	cause	market	makers	to	update	their	
expectations	about	noise	trader	risk	in	future	periods.	There	are	at	least	two	other	channels—outside	
of	our	model—for	why	price	informativeness	may	decrease	during	a	fire	sale.	First,	when	market	
makers	are	uncertain	whether	informed	traders	are	present,	unexpected	trading	activity	(as	from	a	
fire	sale)	may	cause	them	to	update	this	probability,	leading	them	to	demand	a	higher	price	impact	
(e.g.,	Easley	and	O’Hara,	1992;	Avery	and	Zemsky,	1998;	Banerjee	and	Green,	2015),	which	reduces	
price	 informativeness.	 Second,	 fire	 sale	 shocks	may	 hurt	 informed	 arbitrageurs,	 causing	 them	 to	
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trade	less	aggressively	in	the	fire	sale	stock	and	thereby	rendering	it	 less	informationally‐efficient	
(Dow	and	Han,	2016).	

For	illustrational	purposes,	we	now	assume	that	stock	2	has	the	fire	sale	(ݖଶ	and	ߪ௭ଶ
ଶ 	go	up)	and	that	

stock	1	is	a	close	economic	peer	of	stock	2	(i.e.,	ߩ ൐ 0).	We	establish	two	distinct	empirical	predictions	
that	follow	from	these	assumptions.	

Price	 spillover	 effect:	 The	 price	 spillover	 effect	 follows	 from	 the	 increase	ݖଶ .	 Formally,	 such	 an	
increase	in	stock	2’s	asset	supply	causes	a	price	drop	in	both	the	fire	sale	stock	and	its	economic	peer:	

ଶ݌߲
ଶݖ߲

ൌ െܿଶଶ ൏ 0
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
"୤୧୰ୣ	ୱୟ୪ୣ	୮୰୧ୡୣ	ୣ୤୤ୣୡ୲"

				and		
ଵ݌߲
ଶݖ߲

ൌ െܿଵଶ ൏ 0
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

"୮୰୧ୡୣ	ୱ୮୧୪୪୭୴ୣ୰	ୣ୤୤ୣୡ୲"

		

Intuitively,	the	most	direct	consequence	of	the	increase	in	ݖଶ	is	a	drop	in	stock	2’s	price,	which	occurs	
for	two	reasons.	First,	since	investors	are	risk‐averse,	stock	2	must	offer	them	a	bigger	discount	in	
order	for	them	to	hold	more	of	it.	Second,	since	a	given	investor	is	unable	to	disentangle	the	supply	
shock	from	low	demand	by	the	other	investors,	which	he	would	attribute	to	them	having	received	
low	signal	realizations,	he	downgrades	his	expectations	about	ߠଶ	and	thus	demands	less	itself.	The	
price	of	stock	2	must	then	fall	further	for	the	market	to	clear.	

The	drop	in	stock	2’s	price	caused	by	the	fire	sale	should	then	spill	over	to	stock	1.	This	is	due	to	a	
simple	learning	effect:	since	the	two	stock	payoffs	are	positively	correlated,	investors	view	the	drop	
in	stock	2’s	price	as	bad	news	about	stock	1,	leading	them	to	curb	back	their	demand	in	response.	
Thus,	for	the	market	to	clear,	stock	1’s	price	has	to	fall	as	well.	

Finally,	note	that	these	price	effects,	being	caused	by	a	temporary	supply	shock,	should	revert	over	
time.	In	our	static	model,	this	reversal	occurs	instantaneously	when	payoffs	are	realized	at	ݐ ൌ 1.		

	

Liquidity	spillover:	The	 liquidity	spillover	effect	comes	from	the	 increase	 in	ߪ௭ଶ
ଶ 	and	says	that	the	

peer	of	a	fire	sale	stock	suffers	from	lower	liquidity	as	a	result	of	the	fire	sale:	

߲

௭ଶߪ߲
ଶ ൬െ

ଵ݌߲
ଵݖ߲

൰ ൌ
߲ܿଵଵ
௭ଶߪ߲

ଶ ൐ 0
ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
"୪୧୯୳୧ୢ୧୲୷	ୱ୮୧୪୪୭୴ୣ୰	ୣ୤୤ୣୡ୲"

		

The	(negative	of	the)	partial	derivative	of	the	equilibrium	price	with	respect	to	its	own	asset	supply	
measures	how	much	the	price	changes	in	response	to	selling	(buying)	one	additional	share.	In	the	
model,	this	derivative	equals	െ ௝ܿ௝	for	݆ ∈ ሼ1,2ሽ	and	thus	 ௝ܿ௝	can	be	interpreted	as	a	measure	of	stock	
݆’s	liquidity	(akin	to	Kyle’s	lambda).	

The	expression	derived	above	 for	 ௝ܿ௝	does	not	depend	on	ݖ௝	and	so	 there	 is	no	direct	effect	of	 the	
change	in	stock	2’s	asset	supply	on	its	own	liquidity	or	the	liquidity	of	its	peer.	However,	under	the	
assumption	that	there	is	also	an	increase	in	ߪ௭ଶ

ଶ ,	we	expect	the	liquidity	of	stock	1	to	decrease.1	The	
intuition	 for	 this	 is	as	 follows:	by	 increasing	the	uncertainty	about	stock	2’s	supply,	 the	 fire	sales	
reduces	the	informativeness	of	stock	2’s	price	(see	above).	Since	this	price	serves	as	a	signal	for	stock	

                                                 

1 Whether or not the liquidity of the fire sale stock 2 should also deteriorate is unclear and depends on the model assumptions. In Admati (1985), 
an increase in ߪ௭ଶ

ଶ  actually increases liquidity, as it makes each investor less concerned about trading with other better-informed investors (much 
like in Kyle, 1985). In Cespa and Foucault (2014), this adverse-selection channel is shut down by assuming that each stock has its own specialized 
market makers who all know the same. An increase in the variance of supply shocks then decreases liquidity, as risk-averse investors become more 
reluctant to take on additional inventory.   
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1,	investors	become	less	certain	about	ߠଵ	and	thus	more	reluctant	to	accommodate	supply	shocks	in	
stock	1.	In	other	words,	stock	1	becomes	less	liquid.		

	

Cross‐asset	hedging:	One	alternative	explanation	for	a	price	spillover	effect	comes	from	the	hedging	
activity	of	liquidity‐providing	arbitrageurs.	In	a	stock	market	with	price	pressure,	the	fire	sale	causes	
a	temporary	price	drop	in	stock	2	which	attracts	liquidity‐providing	arbitrageurs.	These	arbitrageurs	
want	to	hedge	their	increased	exposure	in	stock	2	by	selling	stock	1,	which	causes	stock	1’s	price	to	
fall	as	well.	Hence,	even	in	the	absence	of	asymmetric	 information,	a	simple	story	based	on	cross‐
asset	hedging	by	liquidity	providers	can	explain	a	price	spillover	from	stock	2	to	stock	1.		

This	can	be	seen	 in	 the	model:	when	 investors’	private	signals	become	completely	uninformative	
ఌଶߪ) → ∞),	ܿଵଶ	converges	to	ߪߩఏ

ଶ/ߛ,	which	is	positive.	Thus,	an	increase	in	ݖଶ	still	causes	a	drop	in	݌ଵ.	
However,	 the	 model	 also	 shows	 that	 a	 story	 based	 on	 cross‐asset	 hedging	 cannot	 explain	 the	
existence	 of	 a	 liquidity	 spillover	 effect.	 Indeed,	 when	ߪఌଶ → ∞,	 ܿଵଵ 	converges	 to	ߪఏ

ଶ/ߛ ,	 which	 is	
independent	 of	ߪ௭ଶ

ଶ .	 Hence,	without	 information	 asymmetry,	 a	 larger	 uncertainty	 about	 stock	 2’s	
supply	should	not	affect	stock	1’s	liquidity.		
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Appendix	B:	Robustness	Checks	

B.1	Event	Study	Results	for	Fire	Sales	and	S&P	500	Index	Additions	

The	main	result	of	our	paper	is	that	fire	sales	spill	over	to	the	returns	of	peer	firms.	In	the	

paper,	we	show	this	in	a	panel	regression	setting,	which	we	argue	is	best	suited	to	isolate	the	

return	 evolution	 for	 a	 given	 event	 in	 the	 presence	 of	 event	 clustering	 (i.e.,	 the	 fact	 that	

sometimes	 fire	 sale	 events	 follow	 right	 after	 another).	 Here,	we	 show	 that	 our	 spillover	

results	 are	 robust	 to	 using	 a	 standard	 event	 study	 approach—only	 that	 the	 evolution	 of	

returns	is	“smoothed	out”	due	to	not	accounting	for	event	clustering.		

As	 in	 the	paper,	 our	 fire	 sale	 events	 comprise	 all	 permno‐quarter	 observations	 in	which	

mfflow	(the	Edmans	et	al.,	2012,	measure	of	mutual	funds’	selling	pressure)	is	in	the	bottom	

decile.	For	each	event,	we	obtain	the	(value‐weighted)	portfolio	of	the	ten	closest	peer	stocks	

(in	 terms	of	 the	TNIC	similarity	score).	We	calculate	abnormal	 returns	using	 the	market‐

model.	 Specifically,	 for	 each	 event,	 we	 estimate	 the	 intercept	 and	 β‐coefficient	 from	

regressing	returns	of	the	fire	sale	stock	and	the	corresponding	peer	portfolio	on	the	CRSP	

value‐weighted	market	 index	 over	 a	 five‐year	 period	 ending	 one	 year	 before	 the	 event‐

quarter	(e.g.,	for	quarters	t=‐24	to	t=‐5	where	t=0	marks	the	event).	We	work	with	monthly	

return	data	to	increase	the	precision	of	this	estimation:	

௜ఛݐ݁ݎ ൌ ௜ߙ ൅ ௜ߚ ൈ ߬						for								ఛݐ݁ݎݐܴ݇݉ܲܵܥ ൌ ሾെ92,െ13ሿ	

where	߬	indicates	the	distance	in	number	of	months	from	the	event	quarter.		

In	the	event	period,	we	then	calculate	abnormal	returns	(ARs)	as	the	difference	of	realized	

returns	minus	the	expected	return	based	on	the	market‐model:	

௜௧ܴܣ ൌ ௜௧ݐ݁ݎ െ ሺߙపෝ ൅ ప෡ߚ ൈ ݐ						for								௧ሻݐ݁ݎݐܴ݇݉ܲܵܥ ൌ ሾെ4,൅12ሿ	

For	each	event,	we	then	cumulate	abnormal	returns	(CARs)	during	the	event	period.	Figure	

B.1a	shows	the	evolution	of	average	CARs	in	event‐time—in	Panel	A	for	fire	sale	firms	and	

in	 Panel	 B	 for	 the	 corresponding	 peer	 portfolio.	 95%‐confidence	 intervals	 are	 based	 on	

standard	errors	clustered	by	event‐quarter.		
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We	also	show	event	study	results	 for	S&P	500	 index	additions	and	their	peers.	Since	this	

analysis	is	at	the	daily	frequency,	we	estimate	the	market‐model	using	daily	return	data	over	

the	period	[‐300,	‐50]	relative	to	the	effective	date	of	the	index	addition.	For	each	addition	

event,	we	again	focus	on	the	(value‐weighted)	portfolio	of	the	top	ten	peers	of	the	added	

stock.	

Figure	B.1b	depicts	the	results.	While	added	stocks	experience	a	strong	run‐up	in	returns	

over	the	days	preceding	the	effective	inclusion	(Panel	A),	there	is	no	significant	spillover	to	

peer	firms	(Panel	B).			
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Figure B.1a: Event study results for Fire Sale and Peer Firms 
This figure shows cumulative abnormal returns based on the market-model for fire sale firms (Panel A) and the (value-
weighted) portfolio of the top ten peer firms (Panel B) in event-time (where 0 is the quarter of the fire sale). The grey 
band around the cumulated returns represents the 95%-confidence interval based on standard errors clustered at the 
event-quarter level.  
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Figure B.1b: Event study results for S&P 500 Index Additions and Peer Firms 
This figure shows cumulative abnormal returns based on the market-model for firms added to the S&P 500 index 
(Panel A) and the (value-weighted) portfolio of the top ten peer firms (Panel B) in event-time (where 0 is the day when 
the addition becomes effective). The grey band around the cumulated returns represents the 95%-confidence interval 
based on standard errors clustered at the event-quarter level.  
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B.2	Different	Risk‐adjusted	Returns	

In	 this	 subsection,	we	 re‐run	our	baseline	 specification	 (1)	 for	 various	measures	of	 risk‐

adjusted	returns.	In	specification	1,	we	use	benchmark‐adjusted	returns	as	recommended	

by	Daniel	et	al.	(1997).	Specifically,	we	sort	stocks	into	one	of	twenty‐five	portfolios	based	

on	market	capitalization	and	book‐to‐market	quintiles	and	subtract	from	each	stock	return	

the	value‐weighted	average	return	of	its	corresponding	benchmark	portfolio.	In	specification	

2,	we	use	CAPM‐alphas.	In	specification	3,	we	use	Fama	and	French	(1993)	3‐factor	alphas.	

In	specification	4,	we	use	Carhart	(1997)	4‐factor	alphas.	In	specification	5,	we	use	Fama	and	

French	(2014)	5‐factor	alphas.	All	alphas	are	estimated	in	a	two‐step	approach.	In	the	first	

step,	we	run	the	corresponding	factor‐model	regressions	using	daily	return	data	in	a	rolling	

window	 covering	 the	 previous	 four	 quarters.	 Daily	 factor	 returns	 come	 from	 Kenneth	

French’s	website	and	the	AQR	data	 library	(for	the	Carhart	momentum	factor).	Following	

Levi	and	Welch	(2017),	we	shrink	the	resulting	factor	loadings	towards	their	cross‐sectional	

averages.	We	then	compound	daily	stock	and	factor	returns	at	the	quarterly	frequency	and	

calculate	alphas	as	

௜௧ߙ
ெ ൌ ௜௧ݐ݁ݎ െ ෡௜௧ࢼ

ெᇲ
௧ࢄ
ெ		,							

where	 superscript	ܯ ∈ ሼܯܲܣܥ, ,3ܨܨ ,ݐݎ݄ܽݎܽܥ 	denotes	5ሽܨܨ the	 factor	model	 and	ࢼ෡௜௧
ெ 	and	

௧ࢄ
ெ 	capture	 the	 corresponding	 vectors	 of	 estimated	 factor	 loadings	 and	 factor	 returns,	

respectively.		

Table	B.2	shows	the	results.	We	see	that,	regardless	of	the	risk‐adjustment	being	used,	we	

always	obtain	a	highly	significant	fire	sale	effect	of	about	‐6%	to	‐7%	that	partially	reverts	

over	 the	 subsequent	quarters.	We	also	 consistently	observe	a	 significant	 return	 spillover	

effect	onto	peer	firms	that	is	between	one‐quarter	and	one‐sixth	of	that	magnitude.	Although	

the	 cumulated	 return	 reversal	 coefficients	 for	 these	 return	 spillovers	 are	 not	 always	

statistically	 significant,	 they	 are	 economically	 sizable	 and	 indicate	 an	 almost	 complete	

reversal	of	returns.	Indeed,	when	we	test	whether	the	cumulated	peer	dummy	coefficients	
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in	the	window	[0,	+8]	are	significantly	different	from	zero,	we	are	always	far	from	rejecting	

the	hypothesis	that	there	was	a	complete	return	reversal	over	this	window	(i.e.,	t‐statistics	

for	these	tests	never	exceed	1;	results	available	upon	request).		

In	conclusion,	both	fire	sale	and	spillover	effects	are	robust	to	using	different	variants	of	risk‐

adjusted	returns.	
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Table B.2: Robustness Check for different Risk-adjusted Returns 
This table reports results from estimating equation (1) at the stock-quarter level. In specification 1, the dependent variable is the benchmark-adjusted return (Daniel et 
al., 1997). In specification 2, the dependent variable is the CAPM-alpha. In specification 3, the dependent variable is the Fama and French (1993) 3-factor alpha. In 
specification 4, the dependent variable is the Carhart (1997) 4-factor alpha. In specification 5, the dependent variable is the Fama and French (2014) 5-factor alpha. 
The main independent variables are FS and PEER dummies that flag fire sale events and peers for fire sale events, respectively. For example, the FS(t=4) dummy 
equals one when the given firm experienced a fire sale 4 quarters ago and the PEER(t=4) dummy equals one for all peer firms of a firm that experienced a fire sale 4 
quarters ago (and that did not themselves experience a fire sale in the previous or subsequent 8 quarters). All regressions include dummies from t=-16 to t=16; for 
brevity we only show the coefficients for t=-2 to t=8. Firm-level controls (logarithm of total assets, logarithm of leverage, investment grade dummy, speculative grade 
dummy, market-to-book ratio, return on assets, logarithm of number of analysts), ownership controls (mutual fund ownership, institutional ownership), mutual fund 
flow controls (separately for fire sale funds and others) and firm and quarter fixed effects are included in all specifications. All variables are defined in Appendix A. 
Standard errors are double-clustered at the firm and quarter level. t-statistics are reported below coefficient estimates in parentheses. At the bottom of the table, we 
report the sum of the FS and PEER dummy coefficients for windows [1, 4] and [1, 8], respectively, together with the corresponding t-statistic for the cumulated return 
reversal. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels.	
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Dep. variable: Benchmark-adj. return CAPM-alpha FF3-alpha Carhart-alpha FF5-alpha 
 (1) (2) (3) (4) (5) 
Event-time FS PEER FS PEER FS PEER FS PEER FS PEER 
t = -2 -0.001 -0.002 -0.002 -0.001 -0.000 -0.002 -0.001 -0.001 -0.001 -0.002 
 (-0.13) (-0.60) (-0.44) (-0.51) (-0.02) (-0.65) (-0.24) (-0.45) (-0.16) (-0.60) 
t = -1 -0.009** -0.004 -0.014** -0.004 -0.011** -0.004 -0.012*** -0.005 -0.009* -0.004 
 (-2.07) (-1.21) (-2.46) (-1.02) (-2.48) (-1.30) (-2.74) (-1.42) (-1.95) (-1.27) 
t = 0 -0.057*** -0.015*** -0.067*** -0.012*** -0.064*** -0.011*** -0.062*** -0.010*** -0.063*** -0.011*** 
 (-10.24) (-3.90) (-9.32) (-3.42) (-9.79) (-3.52) (-10.24) (-3.25) (-9.88) (-3.34) 
t = 1 0.002 0.006** 0.004 0.004 0.003 0.004* 0.002 0.004 0.002 0.003 
 (0.56) (2.26) (0.83) (1.66) (0.63) (1.70) (0.51) (1.50) (0.56) (1.42) 
t = 2 0.005 0.001 0.010* 0.002 0.009* 0.001 0.009* 0.000 0.009* 0.000 
 (1.34) (0.46) (1.86) (0.54) (1.90) (0.25) (1.81) (0.06) (1.90) (0.00) 
t = 3 0.006 0.003 0.013* 0.001 0.009 0.002 0.010 0.001 0.009* 0.002 
 (1.14) (0.75) (1.76) (0.32) (1.49) (0.58) (1.63) (0.17) (1.70) (0.59) 
t = 4 0.007 0.006* 0.002 0.006* 0.003 0.005* 0.004 0.005* 0.002 0.003 
 (1.64) (1.68) (0.46) (1.92) (0.71) (1.78) (0.95) (1.99) (0.48) (1.37) 
t = 5 -0.004 -0.002 -0.004 -0.002 -0.001 -0.003 0.000 -0.003 -0.001 -0.003 
 (-1.40) (-0.49) (-0.90) (-0.73) (-0.36) (-0.86) (0.09) (-1.00) (-0.17) (-0.92) 
t = 6 0.002 -0.000 0.002 -0.001 0.000 -0.001 0.001 -0.001 -0.000 -0.001 
 (0.40) (-0.04) (0.63) (-0.34) (0.18) (-0.30) (0.50) (-0.28) (-0.04) (-0.33) 
t = 7 0.006 -0.001 0.006 0.002 0.004 0.002 0.004 0.002 0.002 0.003 
 (1.13) (-0.32) (1.07) (0.77) (0.98) (0.86) (0.92) (0.83) (0.49) (1.23) 
t = 8 -0.004 0.000 -0.002 0.001 -0.001 0.001 -0.000 -0.001 -0.002 0.000 
 (-0.88) (0.12) (-0.40) (0.22) (-0.25) (0.31) (-0.01) (-0.50) (-0.50) (0.11) 
N 298,921 302,082 302,082 302,082 302,082 
adj. R2 0.033 0.081 0.046 0.037 0.045
Firm & quart. f.e. Yes Yes Yes Yes Yes 
Firm controls Yes Yes Yes Yes Yes 
Ownership controls Yes Yes Yes Yes Yes 
Flow controls Yes Yes Yes Yes Yes 
Reversal [1, 4] 0.020** 0.016** 0.029** 0.013* 0.024** 0.011* 0.025** 0.009 0.022** 0.009 
 (2.12) (2.61) (2.42) (1.92) (2.23) (1.89) (2.38) (1.62) (2.28) (1.45) 
Reversal [1, 8] 0.019 0.013* 0.031** 0.012 0.027** 0.010 0.031** 0.006 0.021* 0.008 
 (1.54) (1.75) (2.07) (1.48) (2.03) (1.54) (2.45) (0.98) (1.75) (1.23) 
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B.3	Fire	Sales	and	Abnormal	Short	Interest	

Huang	 et	 al.	 (2016)	 show	 that	 distressed	mutual	 funds	do	 not	 sell	 stocks	 at	 random.	To	

immunize	us	against	this	selection	concern,	we	follow	Edmans	et	al.	(2012)	and	define	fire	

sales	based	on	hypothetical	sells,	imputed	by	assuming	that	funds	accommodate	outflows	by	

downscaling	 their	 portfolio	 positions	 proportionally.	 In	 this	 subsection,	 we	 offer	 a	 first	

assessment	of	whether	this	methodology	is	indeed	able	to	solve	the	endogeneity	problem	

identified	in	Huang	et	al.	(2016).			

Specifically,	Huang	et	al.	 (2016)	show	that	 fire	sale	stocks	with	an	abnormally	high	short	

interest	see	a	substantially	stronger	return	drop	and	no	return	reversal	compared	to	fire	sale	

stocks	with	low	abnormal	short	interest.	This	suggests	that	mutual	fund	managers,	like	short	

sellers,	are	able	to	identify	stocks	that	underperform	ex	post	and	that	they	sell	these	stocks	

first	when	they	have	to	accommodate	outflows.	Here,	we	check	whether	the	Edmans	et	al.	

(2012)	approach	is	able	to	solve	the	selection	concern	with	respect	to	this	observed	selection	

variable:	the	abnormal	short	interest.2			

For	a	fair	comparison,	we	compute	abnormal	short	interest	exactly	as	described	in	Huang	et	

al.	 (2016):	 we	 run	 a	 regression	 of	 the	 short	 interest	 ratio	 on	 dummy	 variables	 flagging	

different	stock	size,	book‐to‐market,	and	past	return	(over	the	previous	4	quarters)	terciles	

as	well	as	industry	fixed	effects	defined	using	2‐digit	SIC	codes,	and	define	abnormal	short	

interest	as	the	residual	of	this	regression.	We	then	sort	our	fire	sale	events	into	two	groups	

based	on	this	abnormal	short	interest	and	we	repeat	our	panel	regression	specification	(1)	

with	separate	event‐time	dummies	for	both	groups	of	fire	sale	stocks	(peer	dummies	are	not	

                                                 

2 Of course, it is impossible to test the validity of the Edmans et al. (2012) approach for other, unobserved variables upon which mutual fund 
managers select the stocks to sell. In that sense, the ability to withstand selection—like the exclusion restriction of an instrument—is ultimately 
untestable.   
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included	 in	 this	 regression).	 Figure	 B.3	 shows	 the	 results	 for	 the	 specification	 without	

controls.	We	see	that,	with	fire	sales	identified	based	on	the	Edmans	et	al.	(2012)	approach,	

the	abnormal	short	interest	has	no	predictive	power	as	the	cumulated	return	for	fire	sales	

with	 low‐	 or	 high‐abnormal	 short	 interest	 look	 very	 similar.	 Table	B.3	 confirms	 that	 the	

inclusion	of	firm‐	or	fund‐specific	controls	does	not	alter	this	picture.	These	results	stand	in	

sharp	 contrast	 to	 those	 obtained	 in	 Huang	 et	 al.	 (2016)	 and	 therefore	 suggest	 that	 the	

Edmans	et	al.	(2012)	approach	is	successful	in	mitigating	the	selection	problem	induced	by	

mutual	fund	managers’	choice	of	which	stocks	to	sell.		

Finally,	we	note	that	we	do	not	find	any	differences	in	return	spillover	effects	when	we	sort	

peer	stocks	based	on	the	abnormal	short	interest	for	their	associated	fire	sale	stocks	(results	

are	available	upon	request).	This	is	of	course	very	much	expected	given	that	our	results	here	

do	not	show	any	differences	for	fire	sale	stocks	with	low	and	high	abnormal	short	interest.		
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Figure B.3: Event-time Returns for Fire Sales with Low and High Short Interest 
This figure shows returns for fire sale firms with low and high abnormal short interest in event-time (where 0 is the 
quarter of the fire sale). These graphs are based on the cumulated coefficient estimates of the fire sale dummies shown 
in Table B.3, column 1.  
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Table B.3: Fire Sale Effect for Low and High Abnormal Short Interest Stocks 
This table reports results from estimating equation (1) at the stock-quarter level. The dependent variable is the quarterly return. The main independent variables are two 
groups of FS dummies flagging fire sale events for stocks with low and high abnormal short interest, where the abnormal short interest is defined as in Huang et al. 
(2016); see description above. All regressions include separate event-time dummies from t=-16 to t=16 for both groups of fire sales; for brevity we only show the 
coefficients for t=0. Firm and quarter fixed effects are included in all specifications. In specification 2, additional firm-level controls are included (logarithm of total 
assets, logarithm of leverage, investment grade dummy, speculative grade dummy, market-to-book ratio, return on assets, logarithm of number of analysts). In 
specification 3, ownership controls are included (mutual fund ownership, institutional ownership). In specification 4, mutual fund flow controls are included (separately 
for fire sale funds and others). In specification 5, ownership and flow controls are included. In specification 6, firm-level, ownership and flow controls are included. 
All variables are defined in Appendix A. Standard errors are double-clustered at the firm and quarter level. T-statistics are reported below coefficient estimates in 
parentheses. At the bottom of the table, we report the sum of the FS event-time dummy coefficients for windows [1, 4] and [1, 8], respectively, together with the 
corresponding t-statistic for the cumulated return reversal. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels. 
 
 (1)  (2)  (3)  (4)  (5)  (6) 
 Abn Short Interest  Abn Short Interest  Abn Short Interest  Abn Short Interest  Abn Short Interest  Abn Short Interest 
Event-time Low High  Low High  Low High  Low High  Low High  Low High 
t = 0 -0.078*** -0.067***  -0.076*** -0.067***  -0.075*** -0.061***  -0.074*** -0.063***  -0.071*** -0.058***  -0.071*** -0.061*** 
 (-6.89) (-8.68)  (-6.75) (-8.72)  (-6.75) (-7.93)  (-7.28) (-8.89)  (-7.18) (-8.15)  (-7.18) (-8.70) 
N 352,250  339,481  352,250  325,224  325,224  314,711 
adj. R2 0.677  0.689  0.679  0.663  0.666  0.677 
Firm & quart. f.e. Yes  Yes  Yes  Yes  Yes  Yes 
Firm controls No  Yes  No  No  No  Yes 
Own. controls No  No  Yes  No  Yes  Yes 
Flow controls No  No  No  Yes  Yes  Yes 
Reversal [1, 4] 0.029 0.042***  0.028 0.035***  0.034 0.055***  0.031 0.042***  0.036 0.055***  0.030 0.040*** 
 (1.26) (3.92)  (1.24) (3.42)  (1.46) (5.21)  (1.38) (3.96)  (1.58) (5.19)  (1.42) (3.96) 
Reversal [1, 8] 0.047 0.046***  0.042 0.032**  0.052* 0.066***  0.048 0.046***  0.054* 0.065***  0.045 0.041*** 
 (1.52) (3.34)  (1.44) (2.42) (1.69) (4.71) (1.60) (3.34) (1.78) (4.62) (1.60) (3.05) 
 


